Loading…
A numerical solution of the dissipative wave equation by means of the cubic B-spline method
In the past few decades, partial differential equations have drawn considerable attention, owing to their ability to model certain physical phenomena. The aim of this paper is to investigate a cubic B-spline polynomial to obtain a numerical solution of a nonlinear dissipative wave equation. For the...
Saved in:
Published in: | Journal of physics communications 2021-10, Vol.5 (10), p.105014 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c383t-eb99b90c5360d7dcc53654873f21311dc13412b77cfae02595183db917e969323 |
---|---|
cites | cdi_FETCH-LOGICAL-c383t-eb99b90c5360d7dcc53654873f21311dc13412b77cfae02595183db917e969323 |
container_end_page | |
container_issue | 10 |
container_start_page | 105014 |
container_title | Journal of physics communications |
container_volume | 5 |
creator | Alaofi, Z M Ali, T S Dragomir, S S |
description | In the past few decades, partial differential equations have drawn considerable attention, owing to their ability to model certain physical phenomena. The aim of this paper is to investigate a cubic B-spline polynomial to obtain a numerical solution of a nonlinear dissipative wave equation. For the numerical procedure, the time derivative is obtained by the usual finite difference scheme. The approximate solution and its principal derivatives over the subinterval is approximated by the combination of the cubic B-spline and unknown element parameters. The accuracy of the proposed method will be shown by computing L∞ error norms for different time levels. By applying Von Neumann stability analysis, the developed method is shown to be conditionally stable for given values of specified parameters. A numerical example is given to illustrate the accuracy of the cubic B-spline polynomial method. The obtained numerical results show that our proposed method maintains good accuracy. |
doi_str_mv | 10.1088/2399-6528/ac2940 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2583103870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583103870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-eb99b90c5360d7dcc53654873f21311dc13412b77cfae02595183db917e969323</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EElXpzmiJhYGA7YtreywVX1IlFpgYLMdxVFdpnMYJqP89CeFrQCx3p7vfeyc9hE4puaREyisGSiVzzuSVsUyl5ABNvleHv-ZjNItxQwhhQgEHPkEvC1x1W9d4a0ocQ9m1PlQ4FLhdO5z7GH1tWv_q8Jvpi9t15gPI9njrTBW_SNtl3uLrJNalr1x_a9chP0FHhSmjm332KXq-vXla3ierx7uH5WKVWJDQJi5TKlPEcpiTXOR2GHgqBRSMAqW5pZBSlglhC-MI44pTCXmmqHBqroDBFJ2NvnUTdp2Lrd6Erqn6l5pxCZSAFKSnyEjZJsTYuELXjd-aZq8p0UOKeohJDzHpMcVecjFKfKh_PP_Bz__AN7UNmo8qTmiq67yAd-BffvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583103870</pqid></control><display><type>article</type><title>A numerical solution of the dissipative wave equation by means of the cubic B-spline method</title><source>Publicly Available Content Database</source><creator>Alaofi, Z M ; Ali, T S ; Dragomir, S S</creator><creatorcontrib>Alaofi, Z M ; Ali, T S ; Dragomir, S S</creatorcontrib><description>In the past few decades, partial differential equations have drawn considerable attention, owing to their ability to model certain physical phenomena. The aim of this paper is to investigate a cubic B-spline polynomial to obtain a numerical solution of a nonlinear dissipative wave equation. For the numerical procedure, the time derivative is obtained by the usual finite difference scheme. The approximate solution and its principal derivatives over the subinterval is approximated by the combination of the cubic B-spline and unknown element parameters. The accuracy of the proposed method will be shown by computing L∞ error norms for different time levels. By applying Von Neumann stability analysis, the developed method is shown to be conditionally stable for given values of specified parameters. A numerical example is given to illustrate the accuracy of the cubic B-spline polynomial method. The obtained numerical results show that our proposed method maintains good accuracy.</description><identifier>ISSN: 2399-6528</identifier><identifier>EISSN: 2399-6528</identifier><identifier>DOI: 10.1088/2399-6528/ac2940</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Accuracy ; cubic B-spline polynomial ; nonlinear dissipative wave equation ; Partial differential equations ; Von Neumann stability analysis</subject><ispartof>Journal of physics communications, 2021-10, Vol.5 (10), p.105014</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-eb99b90c5360d7dcc53654873f21311dc13412b77cfae02595183db917e969323</citedby><cites>FETCH-LOGICAL-c383t-eb99b90c5360d7dcc53654873f21311dc13412b77cfae02595183db917e969323</cites><orcidid>0000-0002-6556-999X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2583103870?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Alaofi, Z M</creatorcontrib><creatorcontrib>Ali, T S</creatorcontrib><creatorcontrib>Dragomir, S S</creatorcontrib><title>A numerical solution of the dissipative wave equation by means of the cubic B-spline method</title><title>Journal of physics communications</title><addtitle>JPCO</addtitle><addtitle>J. Phys. Commun</addtitle><description>In the past few decades, partial differential equations have drawn considerable attention, owing to their ability to model certain physical phenomena. The aim of this paper is to investigate a cubic B-spline polynomial to obtain a numerical solution of a nonlinear dissipative wave equation. For the numerical procedure, the time derivative is obtained by the usual finite difference scheme. The approximate solution and its principal derivatives over the subinterval is approximated by the combination of the cubic B-spline and unknown element parameters. The accuracy of the proposed method will be shown by computing L∞ error norms for different time levels. By applying Von Neumann stability analysis, the developed method is shown to be conditionally stable for given values of specified parameters. A numerical example is given to illustrate the accuracy of the cubic B-spline polynomial method. The obtained numerical results show that our proposed method maintains good accuracy.</description><subject>Accuracy</subject><subject>cubic B-spline polynomial</subject><subject>nonlinear dissipative wave equation</subject><subject>Partial differential equations</subject><subject>Von Neumann stability analysis</subject><issn>2399-6528</issn><issn>2399-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kL1PwzAQxS0EElXpzmiJhYGA7YtreywVX1IlFpgYLMdxVFdpnMYJqP89CeFrQCx3p7vfeyc9hE4puaREyisGSiVzzuSVsUyl5ABNvleHv-ZjNItxQwhhQgEHPkEvC1x1W9d4a0ocQ9m1PlQ4FLhdO5z7GH1tWv_q8Jvpi9t15gPI9njrTBW_SNtl3uLrJNalr1x_a9chP0FHhSmjm332KXq-vXla3ierx7uH5WKVWJDQJi5TKlPEcpiTXOR2GHgqBRSMAqW5pZBSlglhC-MI44pTCXmmqHBqroDBFJ2NvnUTdp2Lrd6Erqn6l5pxCZSAFKSnyEjZJsTYuELXjd-aZq8p0UOKeohJDzHpMcVecjFKfKh_PP_Bz__AN7UNmo8qTmiq67yAd-BffvY</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Alaofi, Z M</creator><creator>Ali, T S</creator><creator>Dragomir, S S</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6556-999X</orcidid></search><sort><creationdate>20211001</creationdate><title>A numerical solution of the dissipative wave equation by means of the cubic B-spline method</title><author>Alaofi, Z M ; Ali, T S ; Dragomir, S S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-eb99b90c5360d7dcc53654873f21311dc13412b77cfae02595183db917e969323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>cubic B-spline polynomial</topic><topic>nonlinear dissipative wave equation</topic><topic>Partial differential equations</topic><topic>Von Neumann stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alaofi, Z M</creatorcontrib><creatorcontrib>Ali, T S</creatorcontrib><creatorcontrib>Dragomir, S S</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alaofi, Z M</au><au>Ali, T S</au><au>Dragomir, S S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical solution of the dissipative wave equation by means of the cubic B-spline method</atitle><jtitle>Journal of physics communications</jtitle><stitle>JPCO</stitle><addtitle>J. Phys. Commun</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>5</volume><issue>10</issue><spage>105014</spage><pages>105014-</pages><issn>2399-6528</issn><eissn>2399-6528</eissn><abstract>In the past few decades, partial differential equations have drawn considerable attention, owing to their ability to model certain physical phenomena. The aim of this paper is to investigate a cubic B-spline polynomial to obtain a numerical solution of a nonlinear dissipative wave equation. For the numerical procedure, the time derivative is obtained by the usual finite difference scheme. The approximate solution and its principal derivatives over the subinterval is approximated by the combination of the cubic B-spline and unknown element parameters. The accuracy of the proposed method will be shown by computing L∞ error norms for different time levels. By applying Von Neumann stability analysis, the developed method is shown to be conditionally stable for given values of specified parameters. A numerical example is given to illustrate the accuracy of the cubic B-spline polynomial method. The obtained numerical results show that our proposed method maintains good accuracy.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2399-6528/ac2940</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6556-999X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2399-6528 |
ispartof | Journal of physics communications, 2021-10, Vol.5 (10), p.105014 |
issn | 2399-6528 2399-6528 |
language | eng |
recordid | cdi_proquest_journals_2583103870 |
source | Publicly Available Content Database |
subjects | Accuracy cubic B-spline polynomial nonlinear dissipative wave equation Partial differential equations Von Neumann stability analysis |
title | A numerical solution of the dissipative wave equation by means of the cubic B-spline method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20solution%20of%20the%20dissipative%20wave%20equation%20by%20means%20of%20the%20cubic%20B-spline%20method&rft.jtitle=Journal%20of%20physics%20communications&rft.au=Alaofi,%20Z%20M&rft.date=2021-10-01&rft.volume=5&rft.issue=10&rft.spage=105014&rft.pages=105014-&rft.issn=2399-6528&rft.eissn=2399-6528&rft_id=info:doi/10.1088/2399-6528/ac2940&rft_dat=%3Cproquest_iop_j%3E2583103870%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-eb99b90c5360d7dcc53654873f21311dc13412b77cfae02595183db917e969323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583103870&rft_id=info:pmid/&rfr_iscdi=true |