Loading…

A numerical solution of the dissipative wave equation by means of the cubic B-spline method

In the past few decades, partial differential equations have drawn considerable attention, owing to their ability to model certain physical phenomena. The aim of this paper is to investigate a cubic B-spline polynomial to obtain a numerical solution of a nonlinear dissipative wave equation. For the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics communications 2021-10, Vol.5 (10), p.105014
Main Authors: Alaofi, Z M, Ali, T S, Dragomir, S S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-eb99b90c5360d7dcc53654873f21311dc13412b77cfae02595183db917e969323
cites cdi_FETCH-LOGICAL-c383t-eb99b90c5360d7dcc53654873f21311dc13412b77cfae02595183db917e969323
container_end_page
container_issue 10
container_start_page 105014
container_title Journal of physics communications
container_volume 5
creator Alaofi, Z M
Ali, T S
Dragomir, S S
description In the past few decades, partial differential equations have drawn considerable attention, owing to their ability to model certain physical phenomena. The aim of this paper is to investigate a cubic B-spline polynomial to obtain a numerical solution of a nonlinear dissipative wave equation. For the numerical procedure, the time derivative is obtained by the usual finite difference scheme. The approximate solution and its principal derivatives over the subinterval is approximated by the combination of the cubic B-spline and unknown element parameters. The accuracy of the proposed method will be shown by computing L∞ error norms for different time levels. By applying Von Neumann stability analysis, the developed method is shown to be conditionally stable for given values of specified parameters. A numerical example is given to illustrate the accuracy of the cubic B-spline polynomial method. The obtained numerical results show that our proposed method maintains good accuracy.
doi_str_mv 10.1088/2399-6528/ac2940
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2583103870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583103870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-eb99b90c5360d7dcc53654873f21311dc13412b77cfae02595183db917e969323</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EElXpzmiJhYGA7YtreywVX1IlFpgYLMdxVFdpnMYJqP89CeFrQCx3p7vfeyc9hE4puaREyisGSiVzzuSVsUyl5ABNvleHv-ZjNItxQwhhQgEHPkEvC1x1W9d4a0ocQ9m1PlQ4FLhdO5z7GH1tWv_q8Jvpi9t15gPI9njrTBW_SNtl3uLrJNalr1x_a9chP0FHhSmjm332KXq-vXla3ierx7uH5WKVWJDQJi5TKlPEcpiTXOR2GHgqBRSMAqW5pZBSlglhC-MI44pTCXmmqHBqroDBFJ2NvnUTdp2Lrd6Erqn6l5pxCZSAFKSnyEjZJsTYuELXjd-aZq8p0UOKeohJDzHpMcVecjFKfKh_PP_Bz__AN7UNmo8qTmiq67yAd-BffvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583103870</pqid></control><display><type>article</type><title>A numerical solution of the dissipative wave equation by means of the cubic B-spline method</title><source>Publicly Available Content Database</source><creator>Alaofi, Z M ; Ali, T S ; Dragomir, S S</creator><creatorcontrib>Alaofi, Z M ; Ali, T S ; Dragomir, S S</creatorcontrib><description>In the past few decades, partial differential equations have drawn considerable attention, owing to their ability to model certain physical phenomena. The aim of this paper is to investigate a cubic B-spline polynomial to obtain a numerical solution of a nonlinear dissipative wave equation. For the numerical procedure, the time derivative is obtained by the usual finite difference scheme. The approximate solution and its principal derivatives over the subinterval is approximated by the combination of the cubic B-spline and unknown element parameters. The accuracy of the proposed method will be shown by computing L∞ error norms for different time levels. By applying Von Neumann stability analysis, the developed method is shown to be conditionally stable for given values of specified parameters. A numerical example is given to illustrate the accuracy of the cubic B-spline polynomial method. The obtained numerical results show that our proposed method maintains good accuracy.</description><identifier>ISSN: 2399-6528</identifier><identifier>EISSN: 2399-6528</identifier><identifier>DOI: 10.1088/2399-6528/ac2940</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Accuracy ; cubic B-spline polynomial ; nonlinear dissipative wave equation ; Partial differential equations ; Von Neumann stability analysis</subject><ispartof>Journal of physics communications, 2021-10, Vol.5 (10), p.105014</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-eb99b90c5360d7dcc53654873f21311dc13412b77cfae02595183db917e969323</citedby><cites>FETCH-LOGICAL-c383t-eb99b90c5360d7dcc53654873f21311dc13412b77cfae02595183db917e969323</cites><orcidid>0000-0002-6556-999X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2583103870?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Alaofi, Z M</creatorcontrib><creatorcontrib>Ali, T S</creatorcontrib><creatorcontrib>Dragomir, S S</creatorcontrib><title>A numerical solution of the dissipative wave equation by means of the cubic B-spline method</title><title>Journal of physics communications</title><addtitle>JPCO</addtitle><addtitle>J. Phys. Commun</addtitle><description>In the past few decades, partial differential equations have drawn considerable attention, owing to their ability to model certain physical phenomena. The aim of this paper is to investigate a cubic B-spline polynomial to obtain a numerical solution of a nonlinear dissipative wave equation. For the numerical procedure, the time derivative is obtained by the usual finite difference scheme. The approximate solution and its principal derivatives over the subinterval is approximated by the combination of the cubic B-spline and unknown element parameters. The accuracy of the proposed method will be shown by computing L∞ error norms for different time levels. By applying Von Neumann stability analysis, the developed method is shown to be conditionally stable for given values of specified parameters. A numerical example is given to illustrate the accuracy of the cubic B-spline polynomial method. The obtained numerical results show that our proposed method maintains good accuracy.</description><subject>Accuracy</subject><subject>cubic B-spline polynomial</subject><subject>nonlinear dissipative wave equation</subject><subject>Partial differential equations</subject><subject>Von Neumann stability analysis</subject><issn>2399-6528</issn><issn>2399-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kL1PwzAQxS0EElXpzmiJhYGA7YtreywVX1IlFpgYLMdxVFdpnMYJqP89CeFrQCx3p7vfeyc9hE4puaREyisGSiVzzuSVsUyl5ABNvleHv-ZjNItxQwhhQgEHPkEvC1x1W9d4a0ocQ9m1PlQ4FLhdO5z7GH1tWv_q8Jvpi9t15gPI9njrTBW_SNtl3uLrJNalr1x_a9chP0FHhSmjm332KXq-vXla3ierx7uH5WKVWJDQJi5TKlPEcpiTXOR2GHgqBRSMAqW5pZBSlglhC-MI44pTCXmmqHBqroDBFJ2NvnUTdp2Lrd6Erqn6l5pxCZSAFKSnyEjZJsTYuELXjd-aZq8p0UOKeohJDzHpMcVecjFKfKh_PP_Bz__AN7UNmo8qTmiq67yAd-BffvY</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Alaofi, Z M</creator><creator>Ali, T S</creator><creator>Dragomir, S S</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6556-999X</orcidid></search><sort><creationdate>20211001</creationdate><title>A numerical solution of the dissipative wave equation by means of the cubic B-spline method</title><author>Alaofi, Z M ; Ali, T S ; Dragomir, S S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-eb99b90c5360d7dcc53654873f21311dc13412b77cfae02595183db917e969323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>cubic B-spline polynomial</topic><topic>nonlinear dissipative wave equation</topic><topic>Partial differential equations</topic><topic>Von Neumann stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alaofi, Z M</creatorcontrib><creatorcontrib>Ali, T S</creatorcontrib><creatorcontrib>Dragomir, S S</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alaofi, Z M</au><au>Ali, T S</au><au>Dragomir, S S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical solution of the dissipative wave equation by means of the cubic B-spline method</atitle><jtitle>Journal of physics communications</jtitle><stitle>JPCO</stitle><addtitle>J. Phys. Commun</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>5</volume><issue>10</issue><spage>105014</spage><pages>105014-</pages><issn>2399-6528</issn><eissn>2399-6528</eissn><abstract>In the past few decades, partial differential equations have drawn considerable attention, owing to their ability to model certain physical phenomena. The aim of this paper is to investigate a cubic B-spline polynomial to obtain a numerical solution of a nonlinear dissipative wave equation. For the numerical procedure, the time derivative is obtained by the usual finite difference scheme. The approximate solution and its principal derivatives over the subinterval is approximated by the combination of the cubic B-spline and unknown element parameters. The accuracy of the proposed method will be shown by computing L∞ error norms for different time levels. By applying Von Neumann stability analysis, the developed method is shown to be conditionally stable for given values of specified parameters. A numerical example is given to illustrate the accuracy of the cubic B-spline polynomial method. The obtained numerical results show that our proposed method maintains good accuracy.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2399-6528/ac2940</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6556-999X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2399-6528
ispartof Journal of physics communications, 2021-10, Vol.5 (10), p.105014
issn 2399-6528
2399-6528
language eng
recordid cdi_proquest_journals_2583103870
source Publicly Available Content Database
subjects Accuracy
cubic B-spline polynomial
nonlinear dissipative wave equation
Partial differential equations
Von Neumann stability analysis
title A numerical solution of the dissipative wave equation by means of the cubic B-spline method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20solution%20of%20the%20dissipative%20wave%20equation%20by%20means%20of%20the%20cubic%20B-spline%20method&rft.jtitle=Journal%20of%20physics%20communications&rft.au=Alaofi,%20Z%20M&rft.date=2021-10-01&rft.volume=5&rft.issue=10&rft.spage=105014&rft.pages=105014-&rft.issn=2399-6528&rft.eissn=2399-6528&rft_id=info:doi/10.1088/2399-6528/ac2940&rft_dat=%3Cproquest_iop_j%3E2583103870%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-eb99b90c5360d7dcc53654873f21311dc13412b77cfae02595183db917e969323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583103870&rft_id=info:pmid/&rfr_iscdi=true