Loading…

Flare Index Prediction with Machine Learning Algorithms

Solar flares are one of the most important sources of disastrous space weather events, leading to negative effects on spacecrafts and living organisms. It is very important to predict solar flares to minimize the potential losses. In this paper, we use three different machine learning algorithms: K-...

Full description

Saved in:
Bibliographic Details
Published in:Solar physics 2021-10, Vol.296 (10), Article 150
Main Authors: Chen, Anqin, Ye, Qian, Wang, Jingxiu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-40bf8470f06abc97f2d14063e7a0d193de4cdfd8749f7717ffb8b27aa8ffb1723
cites cdi_FETCH-LOGICAL-c319t-40bf8470f06abc97f2d14063e7a0d193de4cdfd8749f7717ffb8b27aa8ffb1723
container_end_page
container_issue 10
container_start_page
container_title Solar physics
container_volume 296
creator Chen, Anqin
Ye, Qian
Wang, Jingxiu
description Solar flares are one of the most important sources of disastrous space weather events, leading to negative effects on spacecrafts and living organisms. It is very important to predict solar flares to minimize the potential losses. In this paper, we use three different machine learning algorithms: K-Nearest Neighbors (KNN), Random Forest (RF), and XGBoost (XGB) to predict the total flare index T flare and the maximum flare index M flare of an active region (AR) within the subsequent of 24, 48, and 72 hrs. First, we selected 54514 vector magnetograms of 129 ARs on the visible solar hemisphere in solar cycle 24 whose maximum sunspot groups’ area was larger than 400 μh. Then the following four magnetic parameters of each magnetogram were calculated: 1) the total magnetic flux | Φ tot | , 2) the total photospheric free magnetic energy density E free , 3) the gradient-weighted integral length of the neutral line with horizontal magnetic gradient of line-of-sight magnetic field larger than 0.1 G km − 1 ( WL SG ), and 4) the area with magnetic shear angle larger than 40 ∘ ( A Ψ ), as well as T flare and M flare corresponding to each magnetogram. Afterward, we split samples randomly into training (85% of the whole data) and testing (15%) data sets. After hyperparameter tuning and model construction we found that RF is an optimal algorithm for the prediction task and that the coefficients of determination ( R 2 ) of test data set via the majority of RF models are beyond 0.97. In addition, the feature importance of RF and XGB models indicates that | Φ tot | and E free are two optimal parameters to predict both T flare and M flare , and | Φ tot | and E free are the best parameters for M flare and T flare , respectively.
doi_str_mv 10.1007/s11207-021-01895-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583230017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583230017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-40bf8470f06abc97f2d14063e7a0d193de4cdfd8749f7717ffb8b27aa8ffb1723</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hMstvJHkvxT6GiBwVvIbtJ2i3tbk22qN_e1BW8eZoH834zvMfYJcI1AtBNRBRAHARyQFUWHI_YCAuSHEr5dsxGAFIdtDplZzGuAQ5YMWJ0tzHBZfPWus_sOTjb1H3TtdlH06-yR1OvmtZlC2dC27TLbLpZdiFttvGcnXizie7id47Z693ty-yBL57u57PpgtcSy57nUHmVE3iYmKouyQuLOUykIwMWS2ldXltvFeWlJ0LyvlKVIGNUUkhCjtnVcHcXuve9i71ed_vQppdaFEoKmZJQconBVYcuxuC83oVma8KXRtCHpHooSKeC9E9BGhMkBygmc7t04e_0P9Q3YPxn3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583230017</pqid></control><display><type>article</type><title>Flare Index Prediction with Machine Learning Algorithms</title><source>Springer Nature</source><creator>Chen, Anqin ; Ye, Qian ; Wang, Jingxiu</creator><creatorcontrib>Chen, Anqin ; Ye, Qian ; Wang, Jingxiu</creatorcontrib><description>Solar flares are one of the most important sources of disastrous space weather events, leading to negative effects on spacecrafts and living organisms. It is very important to predict solar flares to minimize the potential losses. In this paper, we use three different machine learning algorithms: K-Nearest Neighbors (KNN), Random Forest (RF), and XGBoost (XGB) to predict the total flare index T flare and the maximum flare index M flare of an active region (AR) within the subsequent of 24, 48, and 72 hrs. First, we selected 54514 vector magnetograms of 129 ARs on the visible solar hemisphere in solar cycle 24 whose maximum sunspot groups’ area was larger than 400 μh. Then the following four magnetic parameters of each magnetogram were calculated: 1) the total magnetic flux | Φ tot | , 2) the total photospheric free magnetic energy density E free , 3) the gradient-weighted integral length of the neutral line with horizontal magnetic gradient of line-of-sight magnetic field larger than 0.1 G km − 1 ( WL SG ), and 4) the area with magnetic shear angle larger than 40 ∘ ( A Ψ ), as well as T flare and M flare corresponding to each magnetogram. Afterward, we split samples randomly into training (85% of the whole data) and testing (15%) data sets. After hyperparameter tuning and model construction we found that RF is an optimal algorithm for the prediction task and that the coefficients of determination ( R 2 ) of test data set via the majority of RF models are beyond 0.97. In addition, the feature importance of RF and XGB models indicates that | Φ tot | and E free are two optimal parameters to predict both T flare and M flare , and | Φ tot | and E free are the best parameters for M flare and T flare , respectively.</description><identifier>ISSN: 0038-0938</identifier><identifier>EISSN: 1573-093X</identifier><identifier>DOI: 10.1007/s11207-021-01895-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Astrophysics and Astroparticles ; Atmospheric Sciences ; Datasets ; Flux density ; Machine learning ; Magnetic fields ; Magnetic flux ; Magnetic properties ; Mathematical models ; Parameters ; Photosphere ; Physics ; Physics and Astronomy ; Solar cycle ; Solar flares ; Solar physics ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Space weather ; Sunspot cycle ; Sunspot groups ; Sunspots ; Weather effects</subject><ispartof>Solar physics, 2021-10, Vol.296 (10), Article 150</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-40bf8470f06abc97f2d14063e7a0d193de4cdfd8749f7717ffb8b27aa8ffb1723</citedby><cites>FETCH-LOGICAL-c319t-40bf8470f06abc97f2d14063e7a0d193de4cdfd8749f7717ffb8b27aa8ffb1723</cites><orcidid>0000-0003-3605-6244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Chen, Anqin</creatorcontrib><creatorcontrib>Ye, Qian</creatorcontrib><creatorcontrib>Wang, Jingxiu</creatorcontrib><title>Flare Index Prediction with Machine Learning Algorithms</title><title>Solar physics</title><addtitle>Sol Phys</addtitle><description>Solar flares are one of the most important sources of disastrous space weather events, leading to negative effects on spacecrafts and living organisms. It is very important to predict solar flares to minimize the potential losses. In this paper, we use three different machine learning algorithms: K-Nearest Neighbors (KNN), Random Forest (RF), and XGBoost (XGB) to predict the total flare index T flare and the maximum flare index M flare of an active region (AR) within the subsequent of 24, 48, and 72 hrs. First, we selected 54514 vector magnetograms of 129 ARs on the visible solar hemisphere in solar cycle 24 whose maximum sunspot groups’ area was larger than 400 μh. Then the following four magnetic parameters of each magnetogram were calculated: 1) the total magnetic flux | Φ tot | , 2) the total photospheric free magnetic energy density E free , 3) the gradient-weighted integral length of the neutral line with horizontal magnetic gradient of line-of-sight magnetic field larger than 0.1 G km − 1 ( WL SG ), and 4) the area with magnetic shear angle larger than 40 ∘ ( A Ψ ), as well as T flare and M flare corresponding to each magnetogram. Afterward, we split samples randomly into training (85% of the whole data) and testing (15%) data sets. After hyperparameter tuning and model construction we found that RF is an optimal algorithm for the prediction task and that the coefficients of determination ( R 2 ) of test data set via the majority of RF models are beyond 0.97. In addition, the feature importance of RF and XGB models indicates that | Φ tot | and E free are two optimal parameters to predict both T flare and M flare , and | Φ tot | and E free are the best parameters for M flare and T flare , respectively.</description><subject>Algorithms</subject><subject>Astrophysics and Astroparticles</subject><subject>Atmospheric Sciences</subject><subject>Datasets</subject><subject>Flux density</subject><subject>Machine learning</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetic properties</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Photosphere</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solar cycle</subject><subject>Solar flares</subject><subject>Solar physics</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Space weather</subject><subject>Sunspot cycle</subject><subject>Sunspot groups</subject><subject>Sunspots</subject><subject>Weather effects</subject><issn>0038-0938</issn><issn>1573-093X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hMstvJHkvxT6GiBwVvIbtJ2i3tbk22qN_e1BW8eZoH834zvMfYJcI1AtBNRBRAHARyQFUWHI_YCAuSHEr5dsxGAFIdtDplZzGuAQ5YMWJ0tzHBZfPWus_sOTjb1H3TtdlH06-yR1OvmtZlC2dC27TLbLpZdiFttvGcnXizie7id47Z693ty-yBL57u57PpgtcSy57nUHmVE3iYmKouyQuLOUykIwMWS2ldXltvFeWlJ0LyvlKVIGNUUkhCjtnVcHcXuve9i71ed_vQppdaFEoKmZJQconBVYcuxuC83oVma8KXRtCHpHooSKeC9E9BGhMkBygmc7t04e_0P9Q3YPxn3w</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Chen, Anqin</creator><creator>Ye, Qian</creator><creator>Wang, Jingxiu</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3605-6244</orcidid></search><sort><creationdate>20211001</creationdate><title>Flare Index Prediction with Machine Learning Algorithms</title><author>Chen, Anqin ; Ye, Qian ; Wang, Jingxiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-40bf8470f06abc97f2d14063e7a0d193de4cdfd8749f7717ffb8b27aa8ffb1723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Astrophysics and Astroparticles</topic><topic>Atmospheric Sciences</topic><topic>Datasets</topic><topic>Flux density</topic><topic>Machine learning</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetic properties</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Photosphere</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solar cycle</topic><topic>Solar flares</topic><topic>Solar physics</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Space weather</topic><topic>Sunspot cycle</topic><topic>Sunspot groups</topic><topic>Sunspots</topic><topic>Weather effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Anqin</creatorcontrib><creatorcontrib>Ye, Qian</creatorcontrib><creatorcontrib>Wang, Jingxiu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Solar physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Anqin</au><au>Ye, Qian</au><au>Wang, Jingxiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flare Index Prediction with Machine Learning Algorithms</atitle><jtitle>Solar physics</jtitle><stitle>Sol Phys</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>296</volume><issue>10</issue><artnum>150</artnum><issn>0038-0938</issn><eissn>1573-093X</eissn><abstract>Solar flares are one of the most important sources of disastrous space weather events, leading to negative effects on spacecrafts and living organisms. It is very important to predict solar flares to minimize the potential losses. In this paper, we use three different machine learning algorithms: K-Nearest Neighbors (KNN), Random Forest (RF), and XGBoost (XGB) to predict the total flare index T flare and the maximum flare index M flare of an active region (AR) within the subsequent of 24, 48, and 72 hrs. First, we selected 54514 vector magnetograms of 129 ARs on the visible solar hemisphere in solar cycle 24 whose maximum sunspot groups’ area was larger than 400 μh. Then the following four magnetic parameters of each magnetogram were calculated: 1) the total magnetic flux | Φ tot | , 2) the total photospheric free magnetic energy density E free , 3) the gradient-weighted integral length of the neutral line with horizontal magnetic gradient of line-of-sight magnetic field larger than 0.1 G km − 1 ( WL SG ), and 4) the area with magnetic shear angle larger than 40 ∘ ( A Ψ ), as well as T flare and M flare corresponding to each magnetogram. Afterward, we split samples randomly into training (85% of the whole data) and testing (15%) data sets. After hyperparameter tuning and model construction we found that RF is an optimal algorithm for the prediction task and that the coefficients of determination ( R 2 ) of test data set via the majority of RF models are beyond 0.97. In addition, the feature importance of RF and XGB models indicates that | Φ tot | and E free are two optimal parameters to predict both T flare and M flare , and | Φ tot | and E free are the best parameters for M flare and T flare , respectively.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11207-021-01895-1</doi><orcidid>https://orcid.org/0000-0003-3605-6244</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0038-0938
ispartof Solar physics, 2021-10, Vol.296 (10), Article 150
issn 0038-0938
1573-093X
language eng
recordid cdi_proquest_journals_2583230017
source Springer Nature
subjects Algorithms
Astrophysics and Astroparticles
Atmospheric Sciences
Datasets
Flux density
Machine learning
Magnetic fields
Magnetic flux
Magnetic properties
Mathematical models
Parameters
Photosphere
Physics
Physics and Astronomy
Solar cycle
Solar flares
Solar physics
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Space weather
Sunspot cycle
Sunspot groups
Sunspots
Weather effects
title Flare Index Prediction with Machine Learning Algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flare%20Index%20Prediction%20with%20Machine%20Learning%20Algorithms&rft.jtitle=Solar%20physics&rft.au=Chen,%20Anqin&rft.date=2021-10-01&rft.volume=296&rft.issue=10&rft.artnum=150&rft.issn=0038-0938&rft.eissn=1573-093X&rft_id=info:doi/10.1007/s11207-021-01895-1&rft_dat=%3Cproquest_cross%3E2583230017%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-40bf8470f06abc97f2d14063e7a0d193de4cdfd8749f7717ffb8b27aa8ffb1723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583230017&rft_id=info:pmid/&rfr_iscdi=true