Loading…
Flare Index Prediction with Machine Learning Algorithms
Solar flares are one of the most important sources of disastrous space weather events, leading to negative effects on spacecrafts and living organisms. It is very important to predict solar flares to minimize the potential losses. In this paper, we use three different machine learning algorithms: K-...
Saved in:
Published in: | Solar physics 2021-10, Vol.296 (10), Article 150 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-40bf8470f06abc97f2d14063e7a0d193de4cdfd8749f7717ffb8b27aa8ffb1723 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-40bf8470f06abc97f2d14063e7a0d193de4cdfd8749f7717ffb8b27aa8ffb1723 |
container_end_page | |
container_issue | 10 |
container_start_page | |
container_title | Solar physics |
container_volume | 296 |
creator | Chen, Anqin Ye, Qian Wang, Jingxiu |
description | Solar flares are one of the most important sources of disastrous space weather events, leading to negative effects on spacecrafts and living organisms. It is very important to predict solar flares to minimize the potential losses. In this paper, we use three different machine learning algorithms: K-Nearest Neighbors (KNN), Random Forest (RF), and XGBoost (XGB) to predict the total flare index
T
flare
and the maximum flare index
M
flare
of an active region (AR) within the subsequent of 24, 48, and 72 hrs. First, we selected 54514 vector magnetograms of 129 ARs on the visible solar hemisphere in solar cycle 24 whose maximum sunspot groups’ area was larger than 400 μh. Then the following four magnetic parameters of each magnetogram were calculated: 1) the total magnetic flux
|
Φ
tot
|
, 2) the total photospheric free magnetic energy density
E
free
, 3) the gradient-weighted integral length of the neutral line with horizontal magnetic gradient of line-of-sight magnetic field larger than
0.1
G
km
−
1
(
WL
SG
), and 4) the area with magnetic shear angle larger than
40
∘
(
A
Ψ
), as well as
T
flare
and
M
flare
corresponding to each magnetogram. Afterward, we split samples randomly into training (85% of the whole data) and testing (15%) data sets. After hyperparameter tuning and model construction we found that RF is an optimal algorithm for the prediction task and that the coefficients of determination (
R
2
) of test data set via the majority of RF models are beyond 0.97. In addition, the feature importance of RF and XGB models indicates that
|
Φ
tot
|
and
E
free
are two optimal parameters to predict both
T
flare
and
M
flare
, and
|
Φ
tot
|
and
E
free
are the best parameters for
M
flare
and
T
flare
, respectively. |
doi_str_mv | 10.1007/s11207-021-01895-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583230017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583230017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-40bf8470f06abc97f2d14063e7a0d193de4cdfd8749f7717ffb8b27aa8ffb1723</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hMstvJHkvxT6GiBwVvIbtJ2i3tbk22qN_e1BW8eZoH834zvMfYJcI1AtBNRBRAHARyQFUWHI_YCAuSHEr5dsxGAFIdtDplZzGuAQ5YMWJ0tzHBZfPWus_sOTjb1H3TtdlH06-yR1OvmtZlC2dC27TLbLpZdiFttvGcnXizie7id47Z693ty-yBL57u57PpgtcSy57nUHmVE3iYmKouyQuLOUykIwMWS2ldXltvFeWlJ0LyvlKVIGNUUkhCjtnVcHcXuve9i71ed_vQppdaFEoKmZJQconBVYcuxuC83oVma8KXRtCHpHooSKeC9E9BGhMkBygmc7t04e_0P9Q3YPxn3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583230017</pqid></control><display><type>article</type><title>Flare Index Prediction with Machine Learning Algorithms</title><source>Springer Nature</source><creator>Chen, Anqin ; Ye, Qian ; Wang, Jingxiu</creator><creatorcontrib>Chen, Anqin ; Ye, Qian ; Wang, Jingxiu</creatorcontrib><description>Solar flares are one of the most important sources of disastrous space weather events, leading to negative effects on spacecrafts and living organisms. It is very important to predict solar flares to minimize the potential losses. In this paper, we use three different machine learning algorithms: K-Nearest Neighbors (KNN), Random Forest (RF), and XGBoost (XGB) to predict the total flare index
T
flare
and the maximum flare index
M
flare
of an active region (AR) within the subsequent of 24, 48, and 72 hrs. First, we selected 54514 vector magnetograms of 129 ARs on the visible solar hemisphere in solar cycle 24 whose maximum sunspot groups’ area was larger than 400 μh. Then the following four magnetic parameters of each magnetogram were calculated: 1) the total magnetic flux
|
Φ
tot
|
, 2) the total photospheric free magnetic energy density
E
free
, 3) the gradient-weighted integral length of the neutral line with horizontal magnetic gradient of line-of-sight magnetic field larger than
0.1
G
km
−
1
(
WL
SG
), and 4) the area with magnetic shear angle larger than
40
∘
(
A
Ψ
), as well as
T
flare
and
M
flare
corresponding to each magnetogram. Afterward, we split samples randomly into training (85% of the whole data) and testing (15%) data sets. After hyperparameter tuning and model construction we found that RF is an optimal algorithm for the prediction task and that the coefficients of determination (
R
2
) of test data set via the majority of RF models are beyond 0.97. In addition, the feature importance of RF and XGB models indicates that
|
Φ
tot
|
and
E
free
are two optimal parameters to predict both
T
flare
and
M
flare
, and
|
Φ
tot
|
and
E
free
are the best parameters for
M
flare
and
T
flare
, respectively.</description><identifier>ISSN: 0038-0938</identifier><identifier>EISSN: 1573-093X</identifier><identifier>DOI: 10.1007/s11207-021-01895-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Astrophysics and Astroparticles ; Atmospheric Sciences ; Datasets ; Flux density ; Machine learning ; Magnetic fields ; Magnetic flux ; Magnetic properties ; Mathematical models ; Parameters ; Photosphere ; Physics ; Physics and Astronomy ; Solar cycle ; Solar flares ; Solar physics ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Space weather ; Sunspot cycle ; Sunspot groups ; Sunspots ; Weather effects</subject><ispartof>Solar physics, 2021-10, Vol.296 (10), Article 150</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-40bf8470f06abc97f2d14063e7a0d193de4cdfd8749f7717ffb8b27aa8ffb1723</citedby><cites>FETCH-LOGICAL-c319t-40bf8470f06abc97f2d14063e7a0d193de4cdfd8749f7717ffb8b27aa8ffb1723</cites><orcidid>0000-0003-3605-6244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Chen, Anqin</creatorcontrib><creatorcontrib>Ye, Qian</creatorcontrib><creatorcontrib>Wang, Jingxiu</creatorcontrib><title>Flare Index Prediction with Machine Learning Algorithms</title><title>Solar physics</title><addtitle>Sol Phys</addtitle><description>Solar flares are one of the most important sources of disastrous space weather events, leading to negative effects on spacecrafts and living organisms. It is very important to predict solar flares to minimize the potential losses. In this paper, we use three different machine learning algorithms: K-Nearest Neighbors (KNN), Random Forest (RF), and XGBoost (XGB) to predict the total flare index
T
flare
and the maximum flare index
M
flare
of an active region (AR) within the subsequent of 24, 48, and 72 hrs. First, we selected 54514 vector magnetograms of 129 ARs on the visible solar hemisphere in solar cycle 24 whose maximum sunspot groups’ area was larger than 400 μh. Then the following four magnetic parameters of each magnetogram were calculated: 1) the total magnetic flux
|
Φ
tot
|
, 2) the total photospheric free magnetic energy density
E
free
, 3) the gradient-weighted integral length of the neutral line with horizontal magnetic gradient of line-of-sight magnetic field larger than
0.1
G
km
−
1
(
WL
SG
), and 4) the area with magnetic shear angle larger than
40
∘
(
A
Ψ
), as well as
T
flare
and
M
flare
corresponding to each magnetogram. Afterward, we split samples randomly into training (85% of the whole data) and testing (15%) data sets. After hyperparameter tuning and model construction we found that RF is an optimal algorithm for the prediction task and that the coefficients of determination (
R
2
) of test data set via the majority of RF models are beyond 0.97. In addition, the feature importance of RF and XGB models indicates that
|
Φ
tot
|
and
E
free
are two optimal parameters to predict both
T
flare
and
M
flare
, and
|
Φ
tot
|
and
E
free
are the best parameters for
M
flare
and
T
flare
, respectively.</description><subject>Algorithms</subject><subject>Astrophysics and Astroparticles</subject><subject>Atmospheric Sciences</subject><subject>Datasets</subject><subject>Flux density</subject><subject>Machine learning</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetic properties</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Photosphere</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solar cycle</subject><subject>Solar flares</subject><subject>Solar physics</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Space weather</subject><subject>Sunspot cycle</subject><subject>Sunspot groups</subject><subject>Sunspots</subject><subject>Weather effects</subject><issn>0038-0938</issn><issn>1573-093X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-hMstvJHkvxT6GiBwVvIbtJ2i3tbk22qN_e1BW8eZoH834zvMfYJcI1AtBNRBRAHARyQFUWHI_YCAuSHEr5dsxGAFIdtDplZzGuAQ5YMWJ0tzHBZfPWus_sOTjb1H3TtdlH06-yR1OvmtZlC2dC27TLbLpZdiFttvGcnXizie7id47Z693ty-yBL57u57PpgtcSy57nUHmVE3iYmKouyQuLOUykIwMWS2ldXltvFeWlJ0LyvlKVIGNUUkhCjtnVcHcXuve9i71ed_vQppdaFEoKmZJQconBVYcuxuC83oVma8KXRtCHpHooSKeC9E9BGhMkBygmc7t04e_0P9Q3YPxn3w</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Chen, Anqin</creator><creator>Ye, Qian</creator><creator>Wang, Jingxiu</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3605-6244</orcidid></search><sort><creationdate>20211001</creationdate><title>Flare Index Prediction with Machine Learning Algorithms</title><author>Chen, Anqin ; Ye, Qian ; Wang, Jingxiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-40bf8470f06abc97f2d14063e7a0d193de4cdfd8749f7717ffb8b27aa8ffb1723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Astrophysics and Astroparticles</topic><topic>Atmospheric Sciences</topic><topic>Datasets</topic><topic>Flux density</topic><topic>Machine learning</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetic properties</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Photosphere</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solar cycle</topic><topic>Solar flares</topic><topic>Solar physics</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Space weather</topic><topic>Sunspot cycle</topic><topic>Sunspot groups</topic><topic>Sunspots</topic><topic>Weather effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Anqin</creatorcontrib><creatorcontrib>Ye, Qian</creatorcontrib><creatorcontrib>Wang, Jingxiu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Solar physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Anqin</au><au>Ye, Qian</au><au>Wang, Jingxiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flare Index Prediction with Machine Learning Algorithms</atitle><jtitle>Solar physics</jtitle><stitle>Sol Phys</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>296</volume><issue>10</issue><artnum>150</artnum><issn>0038-0938</issn><eissn>1573-093X</eissn><abstract>Solar flares are one of the most important sources of disastrous space weather events, leading to negative effects on spacecrafts and living organisms. It is very important to predict solar flares to minimize the potential losses. In this paper, we use three different machine learning algorithms: K-Nearest Neighbors (KNN), Random Forest (RF), and XGBoost (XGB) to predict the total flare index
T
flare
and the maximum flare index
M
flare
of an active region (AR) within the subsequent of 24, 48, and 72 hrs. First, we selected 54514 vector magnetograms of 129 ARs on the visible solar hemisphere in solar cycle 24 whose maximum sunspot groups’ area was larger than 400 μh. Then the following four magnetic parameters of each magnetogram were calculated: 1) the total magnetic flux
|
Φ
tot
|
, 2) the total photospheric free magnetic energy density
E
free
, 3) the gradient-weighted integral length of the neutral line with horizontal magnetic gradient of line-of-sight magnetic field larger than
0.1
G
km
−
1
(
WL
SG
), and 4) the area with magnetic shear angle larger than
40
∘
(
A
Ψ
), as well as
T
flare
and
M
flare
corresponding to each magnetogram. Afterward, we split samples randomly into training (85% of the whole data) and testing (15%) data sets. After hyperparameter tuning and model construction we found that RF is an optimal algorithm for the prediction task and that the coefficients of determination (
R
2
) of test data set via the majority of RF models are beyond 0.97. In addition, the feature importance of RF and XGB models indicates that
|
Φ
tot
|
and
E
free
are two optimal parameters to predict both
T
flare
and
M
flare
, and
|
Φ
tot
|
and
E
free
are the best parameters for
M
flare
and
T
flare
, respectively.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11207-021-01895-1</doi><orcidid>https://orcid.org/0000-0003-3605-6244</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-0938 |
ispartof | Solar physics, 2021-10, Vol.296 (10), Article 150 |
issn | 0038-0938 1573-093X |
language | eng |
recordid | cdi_proquest_journals_2583230017 |
source | Springer Nature |
subjects | Algorithms Astrophysics and Astroparticles Atmospheric Sciences Datasets Flux density Machine learning Magnetic fields Magnetic flux Magnetic properties Mathematical models Parameters Photosphere Physics Physics and Astronomy Solar cycle Solar flares Solar physics Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Space weather Sunspot cycle Sunspot groups Sunspots Weather effects |
title | Flare Index Prediction with Machine Learning Algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flare%20Index%20Prediction%20with%20Machine%20Learning%20Algorithms&rft.jtitle=Solar%20physics&rft.au=Chen,%20Anqin&rft.date=2021-10-01&rft.volume=296&rft.issue=10&rft.artnum=150&rft.issn=0038-0938&rft.eissn=1573-093X&rft_id=info:doi/10.1007/s11207-021-01895-1&rft_dat=%3Cproquest_cross%3E2583230017%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-40bf8470f06abc97f2d14063e7a0d193de4cdfd8749f7717ffb8b27aa8ffb1723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583230017&rft_id=info:pmid/&rfr_iscdi=true |