Loading…

Understanding Dataset Difficulty with \(\mathcal{V}\)-Usable Information

Estimating the difficulty of a dataset typically involves comparing state-of-the-art models to humans; the bigger the performance gap, the harder the dataset is said to be. However, this comparison provides little understanding of how difficult each instance in a given distribution is, or what attri...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-06
Main Authors: Kawin Ethayarajh, Choi, Yejin, Swayamdipta, Swabha
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kawin Ethayarajh
Choi, Yejin
Swayamdipta, Swabha
description Estimating the difficulty of a dataset typically involves comparing state-of-the-art models to humans; the bigger the performance gap, the harder the dataset is said to be. However, this comparison provides little understanding of how difficult each instance in a given distribution is, or what attributes make the dataset difficult for a given model. To address these questions, we frame dataset difficulty -- w.r.t. a model \(\mathcal{V}\) -- as the lack of \(\mathcal{V}\)-\(\textit{usable information}\) (Xu et al., 2019), where a lower value indicates a more difficult dataset for \(\mathcal{V}\). We further introduce \(\textit{pointwise \)\mathcal{V}\(-information}\) (PVI) for measuring the difficulty of individual instances w.r.t. a given distribution. While standard evaluation metrics typically only compare different models for the same dataset, \(\mathcal{V}\)-\(\textit{usable information}\) and PVI also permit the converse: for a given model \(\mathcal{V}\), we can compare different datasets, as well as different instances/slices of the same dataset. Furthermore, our framework allows for the interpretability of different input attributes via transformations of the input, which we use to discover annotation artefacts in widely-used NLP benchmarks.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2583235000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583235000</sourcerecordid><originalsourceid>FETCH-proquest_journals_25832350003</originalsourceid><addsrcrecordid>eNqNjrEKwjAUAIMgWLT_EHDRoVATo92tUnfrFCixTWxKTDQvRUT8dzv4AU433A03QhGhdJVka0ImKAbo0jQlmy1hjEaoKG0jPQRhG22vOBdBgAw410rpujfhhZ86tJgv-E2Ethbmff7wZVKCuBiJj1Y5Pwjt7AyNlTAg4x-naH7Yn3ZFcvfu0UsIVed6bwdVEZZRQtmwQf-rvmY0PCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583235000</pqid></control><display><type>article</type><title>Understanding Dataset Difficulty with \(\mathcal{V}\)-Usable Information</title><source>Publicly Available Content Database</source><creator>Kawin Ethayarajh ; Choi, Yejin ; Swayamdipta, Swabha</creator><creatorcontrib>Kawin Ethayarajh ; Choi, Yejin ; Swayamdipta, Swabha</creatorcontrib><description>Estimating the difficulty of a dataset typically involves comparing state-of-the-art models to humans; the bigger the performance gap, the harder the dataset is said to be. However, this comparison provides little understanding of how difficult each instance in a given distribution is, or what attributes make the dataset difficult for a given model. To address these questions, we frame dataset difficulty -- w.r.t. a model \(\mathcal{V}\) -- as the lack of \(\mathcal{V}\)-\(\textit{usable information}\) (Xu et al., 2019), where a lower value indicates a more difficult dataset for \(\mathcal{V}\). We further introduce \(\textit{pointwise \)\mathcal{V}\(-information}\) (PVI) for measuring the difficulty of individual instances w.r.t. a given distribution. While standard evaluation metrics typically only compare different models for the same dataset, \(\mathcal{V}\)-\(\textit{usable information}\) and PVI also permit the converse: for a given model \(\mathcal{V}\), we can compare different datasets, as well as different instances/slices of the same dataset. Furthermore, our framework allows for the interpretability of different input attributes via transformations of the input, which we use to discover annotation artefacts in widely-used NLP benchmarks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Annotations ; Datasets ; Information theory</subject><ispartof>arXiv.org, 2022-06</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2583235000?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Kawin Ethayarajh</creatorcontrib><creatorcontrib>Choi, Yejin</creatorcontrib><creatorcontrib>Swayamdipta, Swabha</creatorcontrib><title>Understanding Dataset Difficulty with \(\mathcal{V}\)-Usable Information</title><title>arXiv.org</title><description>Estimating the difficulty of a dataset typically involves comparing state-of-the-art models to humans; the bigger the performance gap, the harder the dataset is said to be. However, this comparison provides little understanding of how difficult each instance in a given distribution is, or what attributes make the dataset difficult for a given model. To address these questions, we frame dataset difficulty -- w.r.t. a model \(\mathcal{V}\) -- as the lack of \(\mathcal{V}\)-\(\textit{usable information}\) (Xu et al., 2019), where a lower value indicates a more difficult dataset for \(\mathcal{V}\). We further introduce \(\textit{pointwise \)\mathcal{V}\(-information}\) (PVI) for measuring the difficulty of individual instances w.r.t. a given distribution. While standard evaluation metrics typically only compare different models for the same dataset, \(\mathcal{V}\)-\(\textit{usable information}\) and PVI also permit the converse: for a given model \(\mathcal{V}\), we can compare different datasets, as well as different instances/slices of the same dataset. Furthermore, our framework allows for the interpretability of different input attributes via transformations of the input, which we use to discover annotation artefacts in widely-used NLP benchmarks.</description><subject>Annotations</subject><subject>Datasets</subject><subject>Information theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjrEKwjAUAIMgWLT_EHDRoVATo92tUnfrFCixTWxKTDQvRUT8dzv4AU433A03QhGhdJVka0ImKAbo0jQlmy1hjEaoKG0jPQRhG22vOBdBgAw410rpujfhhZ86tJgv-E2Ethbmff7wZVKCuBiJj1Y5Pwjt7AyNlTAg4x-naH7Yn3ZFcvfu0UsIVed6bwdVEZZRQtmwQf-rvmY0PCw</recordid><startdate>20220615</startdate><enddate>20220615</enddate><creator>Kawin Ethayarajh</creator><creator>Choi, Yejin</creator><creator>Swayamdipta, Swabha</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220615</creationdate><title>Understanding Dataset Difficulty with \(\mathcal{V}\)-Usable Information</title><author>Kawin Ethayarajh ; Choi, Yejin ; Swayamdipta, Swabha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25832350003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annotations</topic><topic>Datasets</topic><topic>Information theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Kawin Ethayarajh</creatorcontrib><creatorcontrib>Choi, Yejin</creatorcontrib><creatorcontrib>Swayamdipta, Swabha</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawin Ethayarajh</au><au>Choi, Yejin</au><au>Swayamdipta, Swabha</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Understanding Dataset Difficulty with \(\mathcal{V}\)-Usable Information</atitle><jtitle>arXiv.org</jtitle><date>2022-06-15</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Estimating the difficulty of a dataset typically involves comparing state-of-the-art models to humans; the bigger the performance gap, the harder the dataset is said to be. However, this comparison provides little understanding of how difficult each instance in a given distribution is, or what attributes make the dataset difficult for a given model. To address these questions, we frame dataset difficulty -- w.r.t. a model \(\mathcal{V}\) -- as the lack of \(\mathcal{V}\)-\(\textit{usable information}\) (Xu et al., 2019), where a lower value indicates a more difficult dataset for \(\mathcal{V}\). We further introduce \(\textit{pointwise \)\mathcal{V}\(-information}\) (PVI) for measuring the difficulty of individual instances w.r.t. a given distribution. While standard evaluation metrics typically only compare different models for the same dataset, \(\mathcal{V}\)-\(\textit{usable information}\) and PVI also permit the converse: for a given model \(\mathcal{V}\), we can compare different datasets, as well as different instances/slices of the same dataset. Furthermore, our framework allows for the interpretability of different input attributes via transformations of the input, which we use to discover annotation artefacts in widely-used NLP benchmarks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2583235000
source Publicly Available Content Database
subjects Annotations
Datasets
Information theory
title Understanding Dataset Difficulty with \(\mathcal{V}\)-Usable Information
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A29%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Understanding%20Dataset%20Difficulty%20with%20%5C(%5Cmathcal%7BV%7D%5C)-Usable%20Information&rft.jtitle=arXiv.org&rft.au=Kawin%20Ethayarajh&rft.date=2022-06-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2583235000%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25832350003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583235000&rft_id=info:pmid/&rfr_iscdi=true