Loading…

Composition design of 7XXX aluminum alloys optimizing stress corrosion cracking resistance using machine learning

In this paper, three different strategies based on machine learning methods were applied to Al-Zn-Mg-Cu series alloy composition design with the targeted property of stress corrosion cracking (SCC) resistance. By comparing the results of the strategies, it was discovered that the performance of the...

Full description

Saved in:
Bibliographic Details
Published in:Materials research express 2020-04, Vol.7 (4), p.46506
Main Authors: Xinyu, Cao, Yingbo, Zhang, Jiaheng, Li, Hui, Chen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-462077711a4bd0fdb2efa32b948871725918acab332c01e941831bb6111a9ce53
cites cdi_FETCH-LOGICAL-c447t-462077711a4bd0fdb2efa32b948871725918acab332c01e941831bb6111a9ce53
container_end_page
container_issue 4
container_start_page 46506
container_title Materials research express
container_volume 7
creator Xinyu, Cao
Yingbo, Zhang
Jiaheng, Li
Hui, Chen
description In this paper, three different strategies based on machine learning methods were applied to Al-Zn-Mg-Cu series alloy composition design with the targeted property of stress corrosion cracking (SCC) resistance. By comparing the results of the strategies, it was discovered that the performance of the efficient global optimization (EGO) method was better than that of response surface optimization method, and much better than that of Random method, among which the Al-6.05Zn-1.46Mg-1.32Cu-0.13Zr-0.02Ti-0.50Y-0.23Ce (named EGO alloy) alloy had the best stress corrosion cracking resistance. The slow strain rate test (SSRT) technique was carried out to compare the EGO alloy with the traditional 7N01 alloy. It indicated that the ISCC of the new EGO alloy was lower than that of traditional 7N01 alloy for both single and double aging treatment. With the XRD, SEM and EDS analysis, it was found the rare earth elements formed Al8Cu4(Y, Ce) and quadrilateral phase Al20Ti2(Y, Ce) in the EGO alloy.
doi_str_mv 10.1088/2053-1591/ab8492
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2583414333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_815ec6a6f07c48bf9a0c049d655f39e5</doaj_id><sourcerecordid>2583414333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-462077711a4bd0fdb2efa32b948871725918acab332c01e941831bb6111a9ce53</originalsourceid><addsrcrecordid>eNp9UU2LFDEUDKLgMu7dY0Dw5Lj57CRHGfxYWNiLwtzC63QyZuzu9Cbd4PrrN70tqwfxXfKoVNVLXiH0mpL3lGh9xYjkeyoNvYJWC8OeoYsn6Plf_Ut0WcqZEMKU4ZI1F-jukIYplTjHNOLOl3gacQpYHY9HDP0yxHEZatOn-4LTNMch_orjCZc5-1KwSzlXcZW6DO7HelPxWGYYncdLWYEB3Pc4etx7yGMFXqEXAfriL3-fO_Tt08evhy_7m9vP14cPN3snhJr3omFEKUUpiLYjoWuZD8BZa4TWiipWf6PBQcs5c4R6I6jmtG0bWhXGecl36Hrz7RKc7ZTjAPneJoj2EUj5ZCHP0fXeaiq9a6AJRDmh22CAOCJM10gZuHn0erN5TTndLb7M9pyWPNbnWyY1F1TwWjtENparSynZh6eplNg1J7sGYdcg7JZTlbzbJDFNfzz_Q3_7D_qQf1plhSWikaSxUxf4A8FqoQs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583414333</pqid></control><display><type>article</type><title>Composition design of 7XXX aluminum alloys optimizing stress corrosion cracking resistance using machine learning</title><source>Publicly Available Content (ProQuest)</source><creator>Xinyu, Cao ; Yingbo, Zhang ; Jiaheng, Li ; Hui, Chen</creator><creatorcontrib>Xinyu, Cao ; Yingbo, Zhang ; Jiaheng, Li ; Hui, Chen</creatorcontrib><description>In this paper, three different strategies based on machine learning methods were applied to Al-Zn-Mg-Cu series alloy composition design with the targeted property of stress corrosion cracking (SCC) resistance. By comparing the results of the strategies, it was discovered that the performance of the efficient global optimization (EGO) method was better than that of response surface optimization method, and much better than that of Random method, among which the Al-6.05Zn-1.46Mg-1.32Cu-0.13Zr-0.02Ti-0.50Y-0.23Ce (named EGO alloy) alloy had the best stress corrosion cracking resistance. The slow strain rate test (SSRT) technique was carried out to compare the EGO alloy with the traditional 7N01 alloy. It indicated that the ISCC of the new EGO alloy was lower than that of traditional 7N01 alloy for both single and double aging treatment. With the XRD, SEM and EDS analysis, it was found the rare earth elements formed Al8Cu4(Y, Ce) and quadrilateral phase Al20Ti2(Y, Ce) in the EGO alloy.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/ab8492</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aging (metallurgy) ; Al-Zn-Mg-Cu alloy ; Alloys ; Aluminum base alloys ; Composition ; composition design ; Copper ; Corrosion ; Corrosion rate ; Corrosion resistance ; Corrosion resistant alloys ; Design optimization ; efficient global optimization ; Global optimization ; Intergranular fracture ; Machine learning ; machine learning method ; Magnesium ; Quadrilaterals ; Rare earth elements ; Response surface methodology ; Slow strain rate ; Stress corrosion cracking ; Yttrium</subject><ispartof>Materials research express, 2020-04, Vol.7 (4), p.46506</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-462077711a4bd0fdb2efa32b948871725918acab332c01e941831bb6111a9ce53</citedby><cites>FETCH-LOGICAL-c447t-462077711a4bd0fdb2efa32b948871725918acab332c01e941831bb6111a9ce53</cites><orcidid>0000-0002-1172-8000 ; 0000-0002-9686-2320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2583414333?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Xinyu, Cao</creatorcontrib><creatorcontrib>Yingbo, Zhang</creatorcontrib><creatorcontrib>Jiaheng, Li</creatorcontrib><creatorcontrib>Hui, Chen</creatorcontrib><title>Composition design of 7XXX aluminum alloys optimizing stress corrosion cracking resistance using machine learning</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>In this paper, three different strategies based on machine learning methods were applied to Al-Zn-Mg-Cu series alloy composition design with the targeted property of stress corrosion cracking (SCC) resistance. By comparing the results of the strategies, it was discovered that the performance of the efficient global optimization (EGO) method was better than that of response surface optimization method, and much better than that of Random method, among which the Al-6.05Zn-1.46Mg-1.32Cu-0.13Zr-0.02Ti-0.50Y-0.23Ce (named EGO alloy) alloy had the best stress corrosion cracking resistance. The slow strain rate test (SSRT) technique was carried out to compare the EGO alloy with the traditional 7N01 alloy. It indicated that the ISCC of the new EGO alloy was lower than that of traditional 7N01 alloy for both single and double aging treatment. With the XRD, SEM and EDS analysis, it was found the rare earth elements formed Al8Cu4(Y, Ce) and quadrilateral phase Al20Ti2(Y, Ce) in the EGO alloy.</description><subject>Aging (metallurgy)</subject><subject>Al-Zn-Mg-Cu alloy</subject><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Composition</subject><subject>composition design</subject><subject>Copper</subject><subject>Corrosion</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>Design optimization</subject><subject>efficient global optimization</subject><subject>Global optimization</subject><subject>Intergranular fracture</subject><subject>Machine learning</subject><subject>machine learning method</subject><subject>Magnesium</subject><subject>Quadrilaterals</subject><subject>Rare earth elements</subject><subject>Response surface methodology</subject><subject>Slow strain rate</subject><subject>Stress corrosion cracking</subject><subject>Yttrium</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU2LFDEUDKLgMu7dY0Dw5Lj57CRHGfxYWNiLwtzC63QyZuzu9Cbd4PrrN70tqwfxXfKoVNVLXiH0mpL3lGh9xYjkeyoNvYJWC8OeoYsn6Plf_Ut0WcqZEMKU4ZI1F-jukIYplTjHNOLOl3gacQpYHY9HDP0yxHEZatOn-4LTNMch_orjCZc5-1KwSzlXcZW6DO7HelPxWGYYncdLWYEB3Pc4etx7yGMFXqEXAfriL3-fO_Tt08evhy_7m9vP14cPN3snhJr3omFEKUUpiLYjoWuZD8BZa4TWiipWf6PBQcs5c4R6I6jmtG0bWhXGecl36Hrz7RKc7ZTjAPneJoj2EUj5ZCHP0fXeaiq9a6AJRDmh22CAOCJM10gZuHn0erN5TTndLb7M9pyWPNbnWyY1F1TwWjtENparSynZh6eplNg1J7sGYdcg7JZTlbzbJDFNfzz_Q3_7D_qQf1plhSWikaSxUxf4A8FqoQs</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Xinyu, Cao</creator><creator>Yingbo, Zhang</creator><creator>Jiaheng, Li</creator><creator>Hui, Chen</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1172-8000</orcidid><orcidid>https://orcid.org/0000-0002-9686-2320</orcidid></search><sort><creationdate>20200401</creationdate><title>Composition design of 7XXX aluminum alloys optimizing stress corrosion cracking resistance using machine learning</title><author>Xinyu, Cao ; Yingbo, Zhang ; Jiaheng, Li ; Hui, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-462077711a4bd0fdb2efa32b948871725918acab332c01e941831bb6111a9ce53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging (metallurgy)</topic><topic>Al-Zn-Mg-Cu alloy</topic><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Composition</topic><topic>composition design</topic><topic>Copper</topic><topic>Corrosion</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>Design optimization</topic><topic>efficient global optimization</topic><topic>Global optimization</topic><topic>Intergranular fracture</topic><topic>Machine learning</topic><topic>machine learning method</topic><topic>Magnesium</topic><topic>Quadrilaterals</topic><topic>Rare earth elements</topic><topic>Response surface methodology</topic><topic>Slow strain rate</topic><topic>Stress corrosion cracking</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xinyu, Cao</creatorcontrib><creatorcontrib>Yingbo, Zhang</creatorcontrib><creatorcontrib>Jiaheng, Li</creatorcontrib><creatorcontrib>Hui, Chen</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xinyu, Cao</au><au>Yingbo, Zhang</au><au>Jiaheng, Li</au><au>Hui, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition design of 7XXX aluminum alloys optimizing stress corrosion cracking resistance using machine learning</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>7</volume><issue>4</issue><spage>46506</spage><pages>46506-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>In this paper, three different strategies based on machine learning methods were applied to Al-Zn-Mg-Cu series alloy composition design with the targeted property of stress corrosion cracking (SCC) resistance. By comparing the results of the strategies, it was discovered that the performance of the efficient global optimization (EGO) method was better than that of response surface optimization method, and much better than that of Random method, among which the Al-6.05Zn-1.46Mg-1.32Cu-0.13Zr-0.02Ti-0.50Y-0.23Ce (named EGO alloy) alloy had the best stress corrosion cracking resistance. The slow strain rate test (SSRT) technique was carried out to compare the EGO alloy with the traditional 7N01 alloy. It indicated that the ISCC of the new EGO alloy was lower than that of traditional 7N01 alloy for both single and double aging treatment. With the XRD, SEM and EDS analysis, it was found the rare earth elements formed Al8Cu4(Y, Ce) and quadrilateral phase Al20Ti2(Y, Ce) in the EGO alloy.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2053-1591/ab8492</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1172-8000</orcidid><orcidid>https://orcid.org/0000-0002-9686-2320</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2053-1591
ispartof Materials research express, 2020-04, Vol.7 (4), p.46506
issn 2053-1591
2053-1591
language eng
recordid cdi_proquest_journals_2583414333
source Publicly Available Content (ProQuest)
subjects Aging (metallurgy)
Al-Zn-Mg-Cu alloy
Alloys
Aluminum base alloys
Composition
composition design
Copper
Corrosion
Corrosion rate
Corrosion resistance
Corrosion resistant alloys
Design optimization
efficient global optimization
Global optimization
Intergranular fracture
Machine learning
machine learning method
Magnesium
Quadrilaterals
Rare earth elements
Response surface methodology
Slow strain rate
Stress corrosion cracking
Yttrium
title Composition design of 7XXX aluminum alloys optimizing stress corrosion cracking resistance using machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%20design%20of%207XXX%20aluminum%20alloys%20optimizing%20stress%20corrosion%20cracking%20resistance%20using%20machine%20learning&rft.jtitle=Materials%20research%20express&rft.au=Xinyu,%20Cao&rft.date=2020-04-01&rft.volume=7&rft.issue=4&rft.spage=46506&rft.pages=46506-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/ab8492&rft_dat=%3Cproquest_iop_j%3E2583414333%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-462077711a4bd0fdb2efa32b948871725918acab332c01e941831bb6111a9ce53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583414333&rft_id=info:pmid/&rfr_iscdi=true