Loading…
Composition design of 7XXX aluminum alloys optimizing stress corrosion cracking resistance using machine learning
In this paper, three different strategies based on machine learning methods were applied to Al-Zn-Mg-Cu series alloy composition design with the targeted property of stress corrosion cracking (SCC) resistance. By comparing the results of the strategies, it was discovered that the performance of the...
Saved in:
Published in: | Materials research express 2020-04, Vol.7 (4), p.46506 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c447t-462077711a4bd0fdb2efa32b948871725918acab332c01e941831bb6111a9ce53 |
---|---|
cites | cdi_FETCH-LOGICAL-c447t-462077711a4bd0fdb2efa32b948871725918acab332c01e941831bb6111a9ce53 |
container_end_page | |
container_issue | 4 |
container_start_page | 46506 |
container_title | Materials research express |
container_volume | 7 |
creator | Xinyu, Cao Yingbo, Zhang Jiaheng, Li Hui, Chen |
description | In this paper, three different strategies based on machine learning methods were applied to Al-Zn-Mg-Cu series alloy composition design with the targeted property of stress corrosion cracking (SCC) resistance. By comparing the results of the strategies, it was discovered that the performance of the efficient global optimization (EGO) method was better than that of response surface optimization method, and much better than that of Random method, among which the Al-6.05Zn-1.46Mg-1.32Cu-0.13Zr-0.02Ti-0.50Y-0.23Ce (named EGO alloy) alloy had the best stress corrosion cracking resistance. The slow strain rate test (SSRT) technique was carried out to compare the EGO alloy with the traditional 7N01 alloy. It indicated that the ISCC of the new EGO alloy was lower than that of traditional 7N01 alloy for both single and double aging treatment. With the XRD, SEM and EDS analysis, it was found the rare earth elements formed Al8Cu4(Y, Ce) and quadrilateral phase Al20Ti2(Y, Ce) in the EGO alloy. |
doi_str_mv | 10.1088/2053-1591/ab8492 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2583414333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_815ec6a6f07c48bf9a0c049d655f39e5</doaj_id><sourcerecordid>2583414333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-462077711a4bd0fdb2efa32b948871725918acab332c01e941831bb6111a9ce53</originalsourceid><addsrcrecordid>eNp9UU2LFDEUDKLgMu7dY0Dw5Lj57CRHGfxYWNiLwtzC63QyZuzu9Cbd4PrrN70tqwfxXfKoVNVLXiH0mpL3lGh9xYjkeyoNvYJWC8OeoYsn6Plf_Ut0WcqZEMKU4ZI1F-jukIYplTjHNOLOl3gacQpYHY9HDP0yxHEZatOn-4LTNMch_orjCZc5-1KwSzlXcZW6DO7HelPxWGYYncdLWYEB3Pc4etx7yGMFXqEXAfriL3-fO_Tt08evhy_7m9vP14cPN3snhJr3omFEKUUpiLYjoWuZD8BZa4TWiipWf6PBQcs5c4R6I6jmtG0bWhXGecl36Hrz7RKc7ZTjAPneJoj2EUj5ZCHP0fXeaiq9a6AJRDmh22CAOCJM10gZuHn0erN5TTndLb7M9pyWPNbnWyY1F1TwWjtENparSynZh6eplNg1J7sGYdcg7JZTlbzbJDFNfzz_Q3_7D_qQf1plhSWikaSxUxf4A8FqoQs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583414333</pqid></control><display><type>article</type><title>Composition design of 7XXX aluminum alloys optimizing stress corrosion cracking resistance using machine learning</title><source>Publicly Available Content (ProQuest)</source><creator>Xinyu, Cao ; Yingbo, Zhang ; Jiaheng, Li ; Hui, Chen</creator><creatorcontrib>Xinyu, Cao ; Yingbo, Zhang ; Jiaheng, Li ; Hui, Chen</creatorcontrib><description>In this paper, three different strategies based on machine learning methods were applied to Al-Zn-Mg-Cu series alloy composition design with the targeted property of stress corrosion cracking (SCC) resistance. By comparing the results of the strategies, it was discovered that the performance of the efficient global optimization (EGO) method was better than that of response surface optimization method, and much better than that of Random method, among which the Al-6.05Zn-1.46Mg-1.32Cu-0.13Zr-0.02Ti-0.50Y-0.23Ce (named EGO alloy) alloy had the best stress corrosion cracking resistance. The slow strain rate test (SSRT) technique was carried out to compare the EGO alloy with the traditional 7N01 alloy. It indicated that the ISCC of the new EGO alloy was lower than that of traditional 7N01 alloy for both single and double aging treatment. With the XRD, SEM and EDS analysis, it was found the rare earth elements formed Al8Cu4(Y, Ce) and quadrilateral phase Al20Ti2(Y, Ce) in the EGO alloy.</description><identifier>ISSN: 2053-1591</identifier><identifier>EISSN: 2053-1591</identifier><identifier>DOI: 10.1088/2053-1591/ab8492</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aging (metallurgy) ; Al-Zn-Mg-Cu alloy ; Alloys ; Aluminum base alloys ; Composition ; composition design ; Copper ; Corrosion ; Corrosion rate ; Corrosion resistance ; Corrosion resistant alloys ; Design optimization ; efficient global optimization ; Global optimization ; Intergranular fracture ; Machine learning ; machine learning method ; Magnesium ; Quadrilaterals ; Rare earth elements ; Response surface methodology ; Slow strain rate ; Stress corrosion cracking ; Yttrium</subject><ispartof>Materials research express, 2020-04, Vol.7 (4), p.46506</ispartof><rights>2020 The Author(s). Published by IOP Publishing Ltd</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-462077711a4bd0fdb2efa32b948871725918acab332c01e941831bb6111a9ce53</citedby><cites>FETCH-LOGICAL-c447t-462077711a4bd0fdb2efa32b948871725918acab332c01e941831bb6111a9ce53</cites><orcidid>0000-0002-1172-8000 ; 0000-0002-9686-2320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2583414333?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Xinyu, Cao</creatorcontrib><creatorcontrib>Yingbo, Zhang</creatorcontrib><creatorcontrib>Jiaheng, Li</creatorcontrib><creatorcontrib>Hui, Chen</creatorcontrib><title>Composition design of 7XXX aluminum alloys optimizing stress corrosion cracking resistance using machine learning</title><title>Materials research express</title><addtitle>MRX</addtitle><addtitle>Mater. Res. Express</addtitle><description>In this paper, three different strategies based on machine learning methods were applied to Al-Zn-Mg-Cu series alloy composition design with the targeted property of stress corrosion cracking (SCC) resistance. By comparing the results of the strategies, it was discovered that the performance of the efficient global optimization (EGO) method was better than that of response surface optimization method, and much better than that of Random method, among which the Al-6.05Zn-1.46Mg-1.32Cu-0.13Zr-0.02Ti-0.50Y-0.23Ce (named EGO alloy) alloy had the best stress corrosion cracking resistance. The slow strain rate test (SSRT) technique was carried out to compare the EGO alloy with the traditional 7N01 alloy. It indicated that the ISCC of the new EGO alloy was lower than that of traditional 7N01 alloy for both single and double aging treatment. With the XRD, SEM and EDS analysis, it was found the rare earth elements formed Al8Cu4(Y, Ce) and quadrilateral phase Al20Ti2(Y, Ce) in the EGO alloy.</description><subject>Aging (metallurgy)</subject><subject>Al-Zn-Mg-Cu alloy</subject><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Composition</subject><subject>composition design</subject><subject>Copper</subject><subject>Corrosion</subject><subject>Corrosion rate</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>Design optimization</subject><subject>efficient global optimization</subject><subject>Global optimization</subject><subject>Intergranular fracture</subject><subject>Machine learning</subject><subject>machine learning method</subject><subject>Magnesium</subject><subject>Quadrilaterals</subject><subject>Rare earth elements</subject><subject>Response surface methodology</subject><subject>Slow strain rate</subject><subject>Stress corrosion cracking</subject><subject>Yttrium</subject><issn>2053-1591</issn><issn>2053-1591</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU2LFDEUDKLgMu7dY0Dw5Lj57CRHGfxYWNiLwtzC63QyZuzu9Cbd4PrrN70tqwfxXfKoVNVLXiH0mpL3lGh9xYjkeyoNvYJWC8OeoYsn6Plf_Ut0WcqZEMKU4ZI1F-jukIYplTjHNOLOl3gacQpYHY9HDP0yxHEZatOn-4LTNMch_orjCZc5-1KwSzlXcZW6DO7HelPxWGYYncdLWYEB3Pc4etx7yGMFXqEXAfriL3-fO_Tt08evhy_7m9vP14cPN3snhJr3omFEKUUpiLYjoWuZD8BZa4TWiipWf6PBQcs5c4R6I6jmtG0bWhXGecl36Hrz7RKc7ZTjAPneJoj2EUj5ZCHP0fXeaiq9a6AJRDmh22CAOCJM10gZuHn0erN5TTndLb7M9pyWPNbnWyY1F1TwWjtENparSynZh6eplNg1J7sGYdcg7JZTlbzbJDFNfzz_Q3_7D_qQf1plhSWikaSxUxf4A8FqoQs</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Xinyu, Cao</creator><creator>Yingbo, Zhang</creator><creator>Jiaheng, Li</creator><creator>Hui, Chen</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1172-8000</orcidid><orcidid>https://orcid.org/0000-0002-9686-2320</orcidid></search><sort><creationdate>20200401</creationdate><title>Composition design of 7XXX aluminum alloys optimizing stress corrosion cracking resistance using machine learning</title><author>Xinyu, Cao ; Yingbo, Zhang ; Jiaheng, Li ; Hui, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-462077711a4bd0fdb2efa32b948871725918acab332c01e941831bb6111a9ce53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aging (metallurgy)</topic><topic>Al-Zn-Mg-Cu alloy</topic><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Composition</topic><topic>composition design</topic><topic>Copper</topic><topic>Corrosion</topic><topic>Corrosion rate</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>Design optimization</topic><topic>efficient global optimization</topic><topic>Global optimization</topic><topic>Intergranular fracture</topic><topic>Machine learning</topic><topic>machine learning method</topic><topic>Magnesium</topic><topic>Quadrilaterals</topic><topic>Rare earth elements</topic><topic>Response surface methodology</topic><topic>Slow strain rate</topic><topic>Stress corrosion cracking</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xinyu, Cao</creatorcontrib><creatorcontrib>Yingbo, Zhang</creatorcontrib><creatorcontrib>Jiaheng, Li</creatorcontrib><creatorcontrib>Hui, Chen</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials research express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xinyu, Cao</au><au>Yingbo, Zhang</au><au>Jiaheng, Li</au><au>Hui, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composition design of 7XXX aluminum alloys optimizing stress corrosion cracking resistance using machine learning</atitle><jtitle>Materials research express</jtitle><stitle>MRX</stitle><addtitle>Mater. Res. Express</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>7</volume><issue>4</issue><spage>46506</spage><pages>46506-</pages><issn>2053-1591</issn><eissn>2053-1591</eissn><abstract>In this paper, three different strategies based on machine learning methods were applied to Al-Zn-Mg-Cu series alloy composition design with the targeted property of stress corrosion cracking (SCC) resistance. By comparing the results of the strategies, it was discovered that the performance of the efficient global optimization (EGO) method was better than that of response surface optimization method, and much better than that of Random method, among which the Al-6.05Zn-1.46Mg-1.32Cu-0.13Zr-0.02Ti-0.50Y-0.23Ce (named EGO alloy) alloy had the best stress corrosion cracking resistance. The slow strain rate test (SSRT) technique was carried out to compare the EGO alloy with the traditional 7N01 alloy. It indicated that the ISCC of the new EGO alloy was lower than that of traditional 7N01 alloy for both single and double aging treatment. With the XRD, SEM and EDS analysis, it was found the rare earth elements formed Al8Cu4(Y, Ce) and quadrilateral phase Al20Ti2(Y, Ce) in the EGO alloy.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2053-1591/ab8492</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1172-8000</orcidid><orcidid>https://orcid.org/0000-0002-9686-2320</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2053-1591 |
ispartof | Materials research express, 2020-04, Vol.7 (4), p.46506 |
issn | 2053-1591 2053-1591 |
language | eng |
recordid | cdi_proquest_journals_2583414333 |
source | Publicly Available Content (ProQuest) |
subjects | Aging (metallurgy) Al-Zn-Mg-Cu alloy Alloys Aluminum base alloys Composition composition design Copper Corrosion Corrosion rate Corrosion resistance Corrosion resistant alloys Design optimization efficient global optimization Global optimization Intergranular fracture Machine learning machine learning method Magnesium Quadrilaterals Rare earth elements Response surface methodology Slow strain rate Stress corrosion cracking Yttrium |
title | Composition design of 7XXX aluminum alloys optimizing stress corrosion cracking resistance using machine learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composition%20design%20of%207XXX%20aluminum%20alloys%20optimizing%20stress%20corrosion%20cracking%20resistance%20using%20machine%20learning&rft.jtitle=Materials%20research%20express&rft.au=Xinyu,%20Cao&rft.date=2020-04-01&rft.volume=7&rft.issue=4&rft.spage=46506&rft.pages=46506-&rft.issn=2053-1591&rft.eissn=2053-1591&rft_id=info:doi/10.1088/2053-1591/ab8492&rft_dat=%3Cproquest_iop_j%3E2583414333%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-462077711a4bd0fdb2efa32b948871725918acab332c01e941831bb6111a9ce53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583414333&rft_id=info:pmid/&rfr_iscdi=true |