Loading…

A framework for automated and spatially-distributed modeling with the Agricultural Policy Environmental eXtender (APEX) model

Agricultural Best Management Practices (BMPs) are popular approaches to reduce nonpoint source (NPS) pollutant losses. Hydrologic models that can simulate impacts of BMPs at the field-scale can help guide the selection of BMPs. Furthermore, high-performance computing techniques have significant pote...

Full description

Saved in:
Bibliographic Details
Published in:Environmental modelling & software : with environment data news 2021-10, Vol.144, p.105147, Article 105147
Main Authors: Pan, Feng, Feng, Qingyu, McGehee, Ryan, Engel, Bernard A., Flanagan, Dennis C., Chen, Jingqiu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-b48fa5c9c3bfa369a1b27ab8ca14f9061c28d41bec2a03799fbed72ddf3350ef3
cites cdi_FETCH-LOGICAL-c337t-b48fa5c9c3bfa369a1b27ab8ca14f9061c28d41bec2a03799fbed72ddf3350ef3
container_end_page
container_issue
container_start_page 105147
container_title Environmental modelling & software : with environment data news
container_volume 144
creator Pan, Feng
Feng, Qingyu
McGehee, Ryan
Engel, Bernard A.
Flanagan, Dennis C.
Chen, Jingqiu
description Agricultural Best Management Practices (BMPs) are popular approaches to reduce nonpoint source (NPS) pollutant losses. Hydrologic models that can simulate impacts of BMPs at the field-scale can help guide the selection of BMPs. Furthermore, high-performance computing techniques have significant potential for scaling spatial simulations and reducing model runtimes. In this study, a parallel modeling framework for the Agricultural Policy Environmental eXtender (APEX) model was developed for large-scale, high-resolution, spatially-distributed model simulations. It provides a tool for conducting BMP evaluations at field-scale with a distributed architecture and automatic model setup of APEX. Sample results demonstrated the capability of the framework for distributed and semi-distributed modeling and illustrated the performance of parallelization. This framework can help provide guidance for decision makers on agricultural BMPs with large-scale water quality assessments and NPS nutrient loading reductions. •A framework for spatially-distributed modeling of APEX was developed.•Included input database and automated functionality make APEX modeling efficient.•The script is modular and can be readily maintained, modified, and expanded.•Parallelization drastically reduces computational time for spatially-distributed tasks.
doi_str_mv 10.1016/j.envsoft.2021.105147
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583590030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815221001900</els_id><sourcerecordid>2583590030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-b48fa5c9c3bfa369a1b27ab8ca14f9061c28d41bec2a03799fbed72ddf3350ef3</originalsourceid><addsrcrecordid>eNqFUMtKAzEUHUTB-vgEIeBGF1PzmOdKSqkPEHSh4C5kkhubOpPUJNPShf_ulOne1T2ce8653JMkVwRPCSbF3WoKdhOcjlOKKRm4nGTlUTIhVcnSoqTF8YBZkaUVyelpchbCCmM84GyS_M6Q9qKDrfPfSDuPRB9dJyIoJKxCYS2iEW27S5UJ0Zum3286p6A19gttTVyiuAQ0-_JG9m3svWjRm2uN3KGF3RjvbAc2DiR8RrAKPLqZvS0-b8eMi-REizbA5WGeJx8Pi_f5U_ry-vg8n72kkrEypk1WaZHLWrJGC1bUgjS0FE0lBcl0jQsiaaUy0oCkArOyrnUDqqRKacZyDJqdJ9dj7tq7nx5C5CvXezuc5DSvWF5jzPCgykeV9C4ED5qvvemE33GC-b5pvuKHpvm-aT42PfjuRx8ML2wMeB6kAStBGQ8ycuXMPwl_hh-MtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583590030</pqid></control><display><type>article</type><title>A framework for automated and spatially-distributed modeling with the Agricultural Policy Environmental eXtender (APEX) model</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Pan, Feng ; Feng, Qingyu ; McGehee, Ryan ; Engel, Bernard A. ; Flanagan, Dennis C. ; Chen, Jingqiu</creator><creatorcontrib>Pan, Feng ; Feng, Qingyu ; McGehee, Ryan ; Engel, Bernard A. ; Flanagan, Dennis C. ; Chen, Jingqiu</creatorcontrib><description>Agricultural Best Management Practices (BMPs) are popular approaches to reduce nonpoint source (NPS) pollutant losses. Hydrologic models that can simulate impacts of BMPs at the field-scale can help guide the selection of BMPs. Furthermore, high-performance computing techniques have significant potential for scaling spatial simulations and reducing model runtimes. In this study, a parallel modeling framework for the Agricultural Policy Environmental eXtender (APEX) model was developed for large-scale, high-resolution, spatially-distributed model simulations. It provides a tool for conducting BMP evaluations at field-scale with a distributed architecture and automatic model setup of APEX. Sample results demonstrated the capability of the framework for distributed and semi-distributed modeling and illustrated the performance of parallelization. This framework can help provide guidance for decision makers on agricultural BMPs with large-scale water quality assessments and NPS nutrient loading reductions. •A framework for spatially-distributed modeling of APEX was developed.•Included input database and automated functionality make APEX modeling efficient.•The script is modular and can be readily maintained, modified, and expanded.•Parallelization drastically reduces computational time for spatially-distributed tasks.</description><identifier>ISSN: 1364-8152</identifier><identifier>EISSN: 1873-6726</identifier><identifier>DOI: 10.1016/j.envsoft.2021.105147</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Agricultural policy ; Agricultural practices ; APEX ; Apexes ; Best management practices ; Distributed-modeling ; Hydrologic models ; Hydrology ; Nonpoint source pollution ; Nutrient loading ; Parallel computing ; Parallel processing ; Pollutants ; Pollution sources ; Quality assessment ; Simulation ; Water quality ; Water quality assessments</subject><ispartof>Environmental modelling &amp; software : with environment data news, 2021-10, Vol.144, p.105147, Article 105147</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Oct 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-b48fa5c9c3bfa369a1b27ab8ca14f9061c28d41bec2a03799fbed72ddf3350ef3</citedby><cites>FETCH-LOGICAL-c337t-b48fa5c9c3bfa369a1b27ab8ca14f9061c28d41bec2a03799fbed72ddf3350ef3</cites><orcidid>0000-0001-9602-4741 ; 0000-0001-7543-125X ; 0000-0001-7665-7170 ; 0000-0003-0464-9774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Feng, Qingyu</creatorcontrib><creatorcontrib>McGehee, Ryan</creatorcontrib><creatorcontrib>Engel, Bernard A.</creatorcontrib><creatorcontrib>Flanagan, Dennis C.</creatorcontrib><creatorcontrib>Chen, Jingqiu</creatorcontrib><title>A framework for automated and spatially-distributed modeling with the Agricultural Policy Environmental eXtender (APEX) model</title><title>Environmental modelling &amp; software : with environment data news</title><description>Agricultural Best Management Practices (BMPs) are popular approaches to reduce nonpoint source (NPS) pollutant losses. Hydrologic models that can simulate impacts of BMPs at the field-scale can help guide the selection of BMPs. Furthermore, high-performance computing techniques have significant potential for scaling spatial simulations and reducing model runtimes. In this study, a parallel modeling framework for the Agricultural Policy Environmental eXtender (APEX) model was developed for large-scale, high-resolution, spatially-distributed model simulations. It provides a tool for conducting BMP evaluations at field-scale with a distributed architecture and automatic model setup of APEX. Sample results demonstrated the capability of the framework for distributed and semi-distributed modeling and illustrated the performance of parallelization. This framework can help provide guidance for decision makers on agricultural BMPs with large-scale water quality assessments and NPS nutrient loading reductions. •A framework for spatially-distributed modeling of APEX was developed.•Included input database and automated functionality make APEX modeling efficient.•The script is modular and can be readily maintained, modified, and expanded.•Parallelization drastically reduces computational time for spatially-distributed tasks.</description><subject>Agricultural policy</subject><subject>Agricultural practices</subject><subject>APEX</subject><subject>Apexes</subject><subject>Best management practices</subject><subject>Distributed-modeling</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Nonpoint source pollution</subject><subject>Nutrient loading</subject><subject>Parallel computing</subject><subject>Parallel processing</subject><subject>Pollutants</subject><subject>Pollution sources</subject><subject>Quality assessment</subject><subject>Simulation</subject><subject>Water quality</subject><subject>Water quality assessments</subject><issn>1364-8152</issn><issn>1873-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKAzEUHUTB-vgEIeBGF1PzmOdKSqkPEHSh4C5kkhubOpPUJNPShf_ulOne1T2ce8653JMkVwRPCSbF3WoKdhOcjlOKKRm4nGTlUTIhVcnSoqTF8YBZkaUVyelpchbCCmM84GyS_M6Q9qKDrfPfSDuPRB9dJyIoJKxCYS2iEW27S5UJ0Zum3286p6A19gttTVyiuAQ0-_JG9m3svWjRm2uN3KGF3RjvbAc2DiR8RrAKPLqZvS0-b8eMi-REizbA5WGeJx8Pi_f5U_ry-vg8n72kkrEypk1WaZHLWrJGC1bUgjS0FE0lBcl0jQsiaaUy0oCkArOyrnUDqqRKacZyDJqdJ9dj7tq7nx5C5CvXezuc5DSvWF5jzPCgykeV9C4ED5qvvemE33GC-b5pvuKHpvm-aT42PfjuRx8ML2wMeB6kAStBGQ8ycuXMPwl_hh-MtQ</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Pan, Feng</creator><creator>Feng, Qingyu</creator><creator>McGehee, Ryan</creator><creator>Engel, Bernard A.</creator><creator>Flanagan, Dennis C.</creator><creator>Chen, Jingqiu</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9602-4741</orcidid><orcidid>https://orcid.org/0000-0001-7543-125X</orcidid><orcidid>https://orcid.org/0000-0001-7665-7170</orcidid><orcidid>https://orcid.org/0000-0003-0464-9774</orcidid></search><sort><creationdate>202110</creationdate><title>A framework for automated and spatially-distributed modeling with the Agricultural Policy Environmental eXtender (APEX) model</title><author>Pan, Feng ; Feng, Qingyu ; McGehee, Ryan ; Engel, Bernard A. ; Flanagan, Dennis C. ; Chen, Jingqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-b48fa5c9c3bfa369a1b27ab8ca14f9061c28d41bec2a03799fbed72ddf3350ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural policy</topic><topic>Agricultural practices</topic><topic>APEX</topic><topic>Apexes</topic><topic>Best management practices</topic><topic>Distributed-modeling</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Nonpoint source pollution</topic><topic>Nutrient loading</topic><topic>Parallel computing</topic><topic>Parallel processing</topic><topic>Pollutants</topic><topic>Pollution sources</topic><topic>Quality assessment</topic><topic>Simulation</topic><topic>Water quality</topic><topic>Water quality assessments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Feng, Qingyu</creatorcontrib><creatorcontrib>McGehee, Ryan</creatorcontrib><creatorcontrib>Engel, Bernard A.</creatorcontrib><creatorcontrib>Flanagan, Dennis C.</creatorcontrib><creatorcontrib>Chen, Jingqiu</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental modelling &amp; software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Feng</au><au>Feng, Qingyu</au><au>McGehee, Ryan</au><au>Engel, Bernard A.</au><au>Flanagan, Dennis C.</au><au>Chen, Jingqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A framework for automated and spatially-distributed modeling with the Agricultural Policy Environmental eXtender (APEX) model</atitle><jtitle>Environmental modelling &amp; software : with environment data news</jtitle><date>2021-10</date><risdate>2021</risdate><volume>144</volume><spage>105147</spage><pages>105147-</pages><artnum>105147</artnum><issn>1364-8152</issn><eissn>1873-6726</eissn><abstract>Agricultural Best Management Practices (BMPs) are popular approaches to reduce nonpoint source (NPS) pollutant losses. Hydrologic models that can simulate impacts of BMPs at the field-scale can help guide the selection of BMPs. Furthermore, high-performance computing techniques have significant potential for scaling spatial simulations and reducing model runtimes. In this study, a parallel modeling framework for the Agricultural Policy Environmental eXtender (APEX) model was developed for large-scale, high-resolution, spatially-distributed model simulations. It provides a tool for conducting BMP evaluations at field-scale with a distributed architecture and automatic model setup of APEX. Sample results demonstrated the capability of the framework for distributed and semi-distributed modeling and illustrated the performance of parallelization. This framework can help provide guidance for decision makers on agricultural BMPs with large-scale water quality assessments and NPS nutrient loading reductions. •A framework for spatially-distributed modeling of APEX was developed.•Included input database and automated functionality make APEX modeling efficient.•The script is modular and can be readily maintained, modified, and expanded.•Parallelization drastically reduces computational time for spatially-distributed tasks.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2021.105147</doi><orcidid>https://orcid.org/0000-0001-9602-4741</orcidid><orcidid>https://orcid.org/0000-0001-7543-125X</orcidid><orcidid>https://orcid.org/0000-0001-7665-7170</orcidid><orcidid>https://orcid.org/0000-0003-0464-9774</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1364-8152
ispartof Environmental modelling & software : with environment data news, 2021-10, Vol.144, p.105147, Article 105147
issn 1364-8152
1873-6726
language eng
recordid cdi_proquest_journals_2583590030
source ScienceDirect Freedom Collection 2022-2024
subjects Agricultural policy
Agricultural practices
APEX
Apexes
Best management practices
Distributed-modeling
Hydrologic models
Hydrology
Nonpoint source pollution
Nutrient loading
Parallel computing
Parallel processing
Pollutants
Pollution sources
Quality assessment
Simulation
Water quality
Water quality assessments
title A framework for automated and spatially-distributed modeling with the Agricultural Policy Environmental eXtender (APEX) model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A40%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20framework%20for%20automated%20and%20spatially-distributed%20modeling%20with%20the%20Agricultural%20Policy%20Environmental%20eXtender%20(APEX)%20model&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Pan,%20Feng&rft.date=2021-10&rft.volume=144&rft.spage=105147&rft.pages=105147-&rft.artnum=105147&rft.issn=1364-8152&rft.eissn=1873-6726&rft_id=info:doi/10.1016/j.envsoft.2021.105147&rft_dat=%3Cproquest_cross%3E2583590030%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-b48fa5c9c3bfa369a1b27ab8ca14f9061c28d41bec2a03799fbed72ddf3350ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583590030&rft_id=info:pmid/&rfr_iscdi=true