Loading…
Mode-II interlaminar fracture of composite materials in the presence of randomly distributed defects
The focus of the present paper is on the mode-II (shear mode) interlaminar fracture of laminated composite materials with randomly distributed defects such as those generated due to the manufacturing process. The study is conducted using cohesive-zone Finite Element (FE) models of the Interlaminar S...
Saved in:
Published in: | International journal of fracture 2021-10, Vol.231 (2), p.201-221 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The focus of the present paper is on the mode-II (shear mode) interlaminar fracture of laminated composite materials with randomly distributed defects such as those generated due to the manufacturing process. The study is conducted using cohesive-zone Finite Element (FE) models of the Interlaminar Shear (ILS) and the End Notch Flexure (ENF) geometries with explicit inclusion of defects on a representative interlaminar plane. The effective interlaminar shear strength and the effective mode-II fracture energy are obtained by comparing the FE analysis with explicit defects against corresponding homogeneous models. Based on the parametric FE results it was found that the effective ILS strength and the mode-II fracture energy are significantly affected by the defects present on the critical interlaminar fracture plane, and when the defects are small, they follow a linear scaling with the defect area fraction. Simulations with various defect sizes reveal that for defects larger than the size of the delamination process-zone, the concept of the effective ILS strength and effective mode-II fracture energy is not valid, and defects must be represented explicitly in the models. |
---|---|
ISSN: | 0376-9429 1573-2673 |
DOI: | 10.1007/s10704-021-00581-4 |