Loading…
FORest Canopy Atmosphere Transfer (FORCAsT) 2.0: model updates and evaluation with observations at a mixed forest site
The FORCAsT (FORest Canopy Atmosphere Transfer) model version 1.0 is updated to FORCAsT 2.0 by implementing five major changes, including (1) a change to the operator splitting, separating chemistry from emission and dry deposition, which reduces the run time of the gas-phase chemistry by 70 % and p...
Saved in:
Published in: | Geoscientific Model Development 2021-10, Vol.14 (10), p.6309-6329 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c480t-99294717d1003197c1b015fe41eea20e5d90bec46cfa78fb8d39d4add61688543 |
---|---|
cites | cdi_FETCH-LOGICAL-c480t-99294717d1003197c1b015fe41eea20e5d90bec46cfa78fb8d39d4add61688543 |
container_end_page | 6329 |
container_issue | 10 |
container_start_page | 6309 |
container_title | Geoscientific Model Development |
container_volume | 14 |
creator | Wei, Dandan Alwe, Hariprasad D Millet, Dylan B Bottorff, Brandon Lew, Michelle Stevens, Philip S Shutter, Joshua D Cox, Joshua L Keutsch, Frank N Shi, Qianwen Kavassalis, Sarah C Murphy, Jennifer G Vasquez, Krystal T Allen, Hannah M Praske, Eric Crounse, John D Wennberg, Paul O Shepson, Paul B Bui, Alexander A. T Wallace, Henry W Griffin, Robert J May, Nathaniel W Connor, Megan Slade, Jonathan H Pratt, Kerri A Wood, Ezra C Rollings, Mathew Deming, Benjamin L Anderson, Daniel C Steiner, Allison L |
description | The FORCAsT (FORest Canopy Atmosphere Transfer) model version 1.0 is updated to FORCAsT 2.0 by implementing five major changes, including (1) a change to the operator splitting, separating chemistry from emission and dry deposition, which reduces the run time of the gas-phase chemistry by 70 % and produces a more realistic in-canopy profile for isoprene; (2) a modification of the eddy diffusivity parameterization to produce greater and more realistic vertical mixing in the boundary layer, which ameliorates the unrealistic simulated end-of-day peaks in isoprene under well-mixed conditions and improves daytime air temperature; (3) updates to dry deposition velocities with available measurements; (4) implementation of the Reduced Caltech Isoprene Mechanism (RCIM) to reflect the current knowledge of isoprene oxidation; and (5) extension of the aerosol module to include isoprene-derived secondary organic aerosol (iSOA) formation. Along with the operator splitting, modified vertical mixing, and dry deposition, RCIM improves the estimation of first-generation isoprene oxidation products (methyl vinyl ketone and methacrolein) and some second-generation products (such as isoprene epoxydiols). Inclusion of isoprene in the aerosol module in FORCAsT 2.0 leads to a 7 % mass yield of iSOA. The most important iSOA precursors are IEPOX and tetrafunctionals, which together account for >86 % of total iSOA. The iSOA formed from organic nitrates is more important in the canopy, accounting for 11 % of the total iSOA. The tetrafunctionals compose up to 23 % of the total iSOA formation, highlighting the importance of the fate (i.e., dry deposition and gas-phase chemistry) of later-generation isoprene oxidation products in estimating iSOA formation. |
doi_str_mv | 10.5194/gmd-14-6309-2021 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2583768795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A679774608</galeid><doaj_id>oai_doaj_org_article_7ef1e45541fe4cd98818e53c0ab3fff4</doaj_id><sourcerecordid>A679774608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-99294717d1003197c1b015fe41eea20e5d90bec46cfa78fb8d39d4add61688543</originalsourceid><addsrcrecordid>eNptks1rGzEQxZfSQtO09x4FvTSHdaVdrT56M6ZpDYFA6p6FVho5Mt6VK2md5L-vNi5tDWUOGh6_eaOBV1XvCV50RNJP28HWhNasxbJucENeVBdESlJLhtuX__Svqzcp7TBmkjN-UR2vb-8gZbTSYzg8oWUeQjrcQwS0iXpMDiL6WJDVMm2uULPAn9EQLOzRdLA6Q0J6tAiOej_p7MOIHny-R6FPEI_PQgEy0mjwj2CRC3FelXyGt9Urp_cJ3v1-L6sf1182q2_1ze3X9Wp5UxsqcK6lbCTlhFuCcUskN6THpHNACYBuMHRW4h4MZcZpLlwvbCst1dYywoToaHtZrU--NuidOkQ_6PikgvbqWQhxq3TM3uxBcXAEaNdRUvyNlUIQAV1rsO5b59zs9eHkdYjh51QuUbswxbF8XzWdaDkTXHZ_qa0upn50IUdtBp-MWjIuOacMi0It_kOVsjB4E0ZwvuhnA1dnA4XJ8Ji3ekpJrb_fnbP4xJoYUorg_hxOsJrDokpYFKFqDouaw9L-AtFEr6g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583768795</pqid></control><display><type>article</type><title>FORest Canopy Atmosphere Transfer (FORCAsT) 2.0: model updates and evaluation with observations at a mixed forest site</title><source>Publicly Available Content (ProQuest)</source><creator>Wei, Dandan ; Alwe, Hariprasad D ; Millet, Dylan B ; Bottorff, Brandon ; Lew, Michelle ; Stevens, Philip S ; Shutter, Joshua D ; Cox, Joshua L ; Keutsch, Frank N ; Shi, Qianwen ; Kavassalis, Sarah C ; Murphy, Jennifer G ; Vasquez, Krystal T ; Allen, Hannah M ; Praske, Eric ; Crounse, John D ; Wennberg, Paul O ; Shepson, Paul B ; Bui, Alexander A. T ; Wallace, Henry W ; Griffin, Robert J ; May, Nathaniel W ; Connor, Megan ; Slade, Jonathan H ; Pratt, Kerri A ; Wood, Ezra C ; Rollings, Mathew ; Deming, Benjamin L ; Anderson, Daniel C ; Steiner, Allison L</creator><creatorcontrib>Wei, Dandan ; Alwe, Hariprasad D ; Millet, Dylan B ; Bottorff, Brandon ; Lew, Michelle ; Stevens, Philip S ; Shutter, Joshua D ; Cox, Joshua L ; Keutsch, Frank N ; Shi, Qianwen ; Kavassalis, Sarah C ; Murphy, Jennifer G ; Vasquez, Krystal T ; Allen, Hannah M ; Praske, Eric ; Crounse, John D ; Wennberg, Paul O ; Shepson, Paul B ; Bui, Alexander A. T ; Wallace, Henry W ; Griffin, Robert J ; May, Nathaniel W ; Connor, Megan ; Slade, Jonathan H ; Pratt, Kerri A ; Wood, Ezra C ; Rollings, Mathew ; Deming, Benjamin L ; Anderson, Daniel C ; Steiner, Allison L</creatorcontrib><description>The FORCAsT (FORest Canopy Atmosphere Transfer) model version 1.0 is updated to FORCAsT 2.0 by implementing five major changes, including (1) a change to the operator splitting, separating chemistry from emission and dry deposition, which reduces the run time of the gas-phase chemistry by 70 % and produces a more realistic in-canopy profile for isoprene; (2) a modification of the eddy diffusivity parameterization to produce greater and more realistic vertical mixing in the boundary layer, which ameliorates the unrealistic simulated end-of-day peaks in isoprene under well-mixed conditions and improves daytime air temperature; (3) updates to dry deposition velocities with available measurements; (4) implementation of the Reduced Caltech Isoprene Mechanism (RCIM) to reflect the current knowledge of isoprene oxidation; and (5) extension of the aerosol module to include isoprene-derived secondary organic aerosol (iSOA) formation. Along with the operator splitting, modified vertical mixing, and dry deposition, RCIM improves the estimation of first-generation isoprene oxidation products (methyl vinyl ketone and methacrolein) and some second-generation products (such as isoprene epoxydiols). Inclusion of isoprene in the aerosol module in FORCAsT 2.0 leads to a 7 % mass yield of iSOA. The most important iSOA precursors are IEPOX and tetrafunctionals, which together account for >86 % of total iSOA. The iSOA formed from organic nitrates is more important in the canopy, accounting for 11 % of the total iSOA. The tetrafunctionals compose up to 23 % of the total iSOA formation, highlighting the importance of the fate (i.e., dry deposition and gas-phase chemistry) of later-generation isoprene oxidation products in estimating iSOA formation.</description><identifier>ISSN: 1991-9603</identifier><identifier>ISSN: 1991-959X</identifier><identifier>ISSN: 1991-962X</identifier><identifier>EISSN: 1991-9603</identifier><identifier>EISSN: 1991-962X</identifier><identifier>DOI: 10.5194/gmd-14-6309-2021</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Aerosols ; Air temperature ; Atmosphere ; Atmospheric boundary layer ; Atmospheric chemistry ; Boundary layers ; Canopies ; Canopy ; Chemical reactions ; Chemistry ; Deposition ; Dry deposition ; Eddy diffusion ; Eddy diffusivity ; Forests ; Gases ; Isoprene ; Ketones ; Modules ; Nitrates ; Organic nitrates ; Oxidation ; Parameterization ; Plant cover ; Secondary aerosols ; Splitting ; Vertical mixing ; VOCs ; Volatile organic compounds</subject><ispartof>Geoscientific Model Development, 2021-10, Vol.14 (10), p.6309-6329</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-99294717d1003197c1b015fe41eea20e5d90bec46cfa78fb8d39d4add61688543</citedby><cites>FETCH-LOGICAL-c480t-99294717d1003197c1b015fe41eea20e5d90bec46cfa78fb8d39d4add61688543</cites><orcidid>0000-0001-8291-8242 ; 0000-0003-4707-2290 ; 0000-0003-4540-4212 ; 0000-0003-3076-125X ; 0000-0002-9533-215X ; 0000-0003-3690-0046 ; 0000-0002-9826-9811 ; 0000-0002-6126-3854 ; 0000-0001-9899-4215 ; 0000-0001-8865-5463 ; 0000-0002-1205-1564 ; 0000-0001-5443-729X ; 0000-0002-5597-6233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2583768795/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2583768795?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Wei, Dandan</creatorcontrib><creatorcontrib>Alwe, Hariprasad D</creatorcontrib><creatorcontrib>Millet, Dylan B</creatorcontrib><creatorcontrib>Bottorff, Brandon</creatorcontrib><creatorcontrib>Lew, Michelle</creatorcontrib><creatorcontrib>Stevens, Philip S</creatorcontrib><creatorcontrib>Shutter, Joshua D</creatorcontrib><creatorcontrib>Cox, Joshua L</creatorcontrib><creatorcontrib>Keutsch, Frank N</creatorcontrib><creatorcontrib>Shi, Qianwen</creatorcontrib><creatorcontrib>Kavassalis, Sarah C</creatorcontrib><creatorcontrib>Murphy, Jennifer G</creatorcontrib><creatorcontrib>Vasquez, Krystal T</creatorcontrib><creatorcontrib>Allen, Hannah M</creatorcontrib><creatorcontrib>Praske, Eric</creatorcontrib><creatorcontrib>Crounse, John D</creatorcontrib><creatorcontrib>Wennberg, Paul O</creatorcontrib><creatorcontrib>Shepson, Paul B</creatorcontrib><creatorcontrib>Bui, Alexander A. T</creatorcontrib><creatorcontrib>Wallace, Henry W</creatorcontrib><creatorcontrib>Griffin, Robert J</creatorcontrib><creatorcontrib>May, Nathaniel W</creatorcontrib><creatorcontrib>Connor, Megan</creatorcontrib><creatorcontrib>Slade, Jonathan H</creatorcontrib><creatorcontrib>Pratt, Kerri A</creatorcontrib><creatorcontrib>Wood, Ezra C</creatorcontrib><creatorcontrib>Rollings, Mathew</creatorcontrib><creatorcontrib>Deming, Benjamin L</creatorcontrib><creatorcontrib>Anderson, Daniel C</creatorcontrib><creatorcontrib>Steiner, Allison L</creatorcontrib><title>FORest Canopy Atmosphere Transfer (FORCAsT) 2.0: model updates and evaluation with observations at a mixed forest site</title><title>Geoscientific Model Development</title><description>The FORCAsT (FORest Canopy Atmosphere Transfer) model version 1.0 is updated to FORCAsT 2.0 by implementing five major changes, including (1) a change to the operator splitting, separating chemistry from emission and dry deposition, which reduces the run time of the gas-phase chemistry by 70 % and produces a more realistic in-canopy profile for isoprene; (2) a modification of the eddy diffusivity parameterization to produce greater and more realistic vertical mixing in the boundary layer, which ameliorates the unrealistic simulated end-of-day peaks in isoprene under well-mixed conditions and improves daytime air temperature; (3) updates to dry deposition velocities with available measurements; (4) implementation of the Reduced Caltech Isoprene Mechanism (RCIM) to reflect the current knowledge of isoprene oxidation; and (5) extension of the aerosol module to include isoprene-derived secondary organic aerosol (iSOA) formation. Along with the operator splitting, modified vertical mixing, and dry deposition, RCIM improves the estimation of first-generation isoprene oxidation products (methyl vinyl ketone and methacrolein) and some second-generation products (such as isoprene epoxydiols). Inclusion of isoprene in the aerosol module in FORCAsT 2.0 leads to a 7 % mass yield of iSOA. The most important iSOA precursors are IEPOX and tetrafunctionals, which together account for >86 % of total iSOA. The iSOA formed from organic nitrates is more important in the canopy, accounting for 11 % of the total iSOA. The tetrafunctionals compose up to 23 % of the total iSOA formation, highlighting the importance of the fate (i.e., dry deposition and gas-phase chemistry) of later-generation isoprene oxidation products in estimating iSOA formation.</description><subject>Aerosols</subject><subject>Air temperature</subject><subject>Atmosphere</subject><subject>Atmospheric boundary layer</subject><subject>Atmospheric chemistry</subject><subject>Boundary layers</subject><subject>Canopies</subject><subject>Canopy</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Deposition</subject><subject>Dry deposition</subject><subject>Eddy diffusion</subject><subject>Eddy diffusivity</subject><subject>Forests</subject><subject>Gases</subject><subject>Isoprene</subject><subject>Ketones</subject><subject>Modules</subject><subject>Nitrates</subject><subject>Organic nitrates</subject><subject>Oxidation</subject><subject>Parameterization</subject><subject>Plant cover</subject><subject>Secondary aerosols</subject><subject>Splitting</subject><subject>Vertical mixing</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><issn>1991-9603</issn><issn>1991-962X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks1rGzEQxZfSQtO09x4FvTSHdaVdrT56M6ZpDYFA6p6FVho5Mt6VK2md5L-vNi5tDWUOGh6_eaOBV1XvCV50RNJP28HWhNasxbJucENeVBdESlJLhtuX__Svqzcp7TBmkjN-UR2vb-8gZbTSYzg8oWUeQjrcQwS0iXpMDiL6WJDVMm2uULPAn9EQLOzRdLA6Q0J6tAiOej_p7MOIHny-R6FPEI_PQgEy0mjwj2CRC3FelXyGt9Urp_cJ3v1-L6sf1182q2_1ze3X9Wp5UxsqcK6lbCTlhFuCcUskN6THpHNACYBuMHRW4h4MZcZpLlwvbCst1dYywoToaHtZrU--NuidOkQ_6PikgvbqWQhxq3TM3uxBcXAEaNdRUvyNlUIQAV1rsO5b59zs9eHkdYjh51QuUbswxbF8XzWdaDkTXHZ_qa0upn50IUdtBp-MWjIuOacMi0It_kOVsjB4E0ZwvuhnA1dnA4XJ8Ji3ekpJrb_fnbP4xJoYUorg_hxOsJrDokpYFKFqDouaw9L-AtFEr6g</recordid><startdate>20211021</startdate><enddate>20211021</enddate><creator>Wei, Dandan</creator><creator>Alwe, Hariprasad D</creator><creator>Millet, Dylan B</creator><creator>Bottorff, Brandon</creator><creator>Lew, Michelle</creator><creator>Stevens, Philip S</creator><creator>Shutter, Joshua D</creator><creator>Cox, Joshua L</creator><creator>Keutsch, Frank N</creator><creator>Shi, Qianwen</creator><creator>Kavassalis, Sarah C</creator><creator>Murphy, Jennifer G</creator><creator>Vasquez, Krystal T</creator><creator>Allen, Hannah M</creator><creator>Praske, Eric</creator><creator>Crounse, John D</creator><creator>Wennberg, Paul O</creator><creator>Shepson, Paul B</creator><creator>Bui, Alexander A. T</creator><creator>Wallace, Henry W</creator><creator>Griffin, Robert J</creator><creator>May, Nathaniel W</creator><creator>Connor, Megan</creator><creator>Slade, Jonathan H</creator><creator>Pratt, Kerri A</creator><creator>Wood, Ezra C</creator><creator>Rollings, Mathew</creator><creator>Deming, Benjamin L</creator><creator>Anderson, Daniel C</creator><creator>Steiner, Allison L</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8291-8242</orcidid><orcidid>https://orcid.org/0000-0003-4707-2290</orcidid><orcidid>https://orcid.org/0000-0003-4540-4212</orcidid><orcidid>https://orcid.org/0000-0003-3076-125X</orcidid><orcidid>https://orcid.org/0000-0002-9533-215X</orcidid><orcidid>https://orcid.org/0000-0003-3690-0046</orcidid><orcidid>https://orcid.org/0000-0002-9826-9811</orcidid><orcidid>https://orcid.org/0000-0002-6126-3854</orcidid><orcidid>https://orcid.org/0000-0001-9899-4215</orcidid><orcidid>https://orcid.org/0000-0001-8865-5463</orcidid><orcidid>https://orcid.org/0000-0002-1205-1564</orcidid><orcidid>https://orcid.org/0000-0001-5443-729X</orcidid><orcidid>https://orcid.org/0000-0002-5597-6233</orcidid></search><sort><creationdate>20211021</creationdate><title>FORest Canopy Atmosphere Transfer (FORCAsT) 2.0: model updates and evaluation with observations at a mixed forest site</title><author>Wei, Dandan ; Alwe, Hariprasad D ; Millet, Dylan B ; Bottorff, Brandon ; Lew, Michelle ; Stevens, Philip S ; Shutter, Joshua D ; Cox, Joshua L ; Keutsch, Frank N ; Shi, Qianwen ; Kavassalis, Sarah C ; Murphy, Jennifer G ; Vasquez, Krystal T ; Allen, Hannah M ; Praske, Eric ; Crounse, John D ; Wennberg, Paul O ; Shepson, Paul B ; Bui, Alexander A. T ; Wallace, Henry W ; Griffin, Robert J ; May, Nathaniel W ; Connor, Megan ; Slade, Jonathan H ; Pratt, Kerri A ; Wood, Ezra C ; Rollings, Mathew ; Deming, Benjamin L ; Anderson, Daniel C ; Steiner, Allison L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-99294717d1003197c1b015fe41eea20e5d90bec46cfa78fb8d39d4add61688543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerosols</topic><topic>Air temperature</topic><topic>Atmosphere</topic><topic>Atmospheric boundary layer</topic><topic>Atmospheric chemistry</topic><topic>Boundary layers</topic><topic>Canopies</topic><topic>Canopy</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Deposition</topic><topic>Dry deposition</topic><topic>Eddy diffusion</topic><topic>Eddy diffusivity</topic><topic>Forests</topic><topic>Gases</topic><topic>Isoprene</topic><topic>Ketones</topic><topic>Modules</topic><topic>Nitrates</topic><topic>Organic nitrates</topic><topic>Oxidation</topic><topic>Parameterization</topic><topic>Plant cover</topic><topic>Secondary aerosols</topic><topic>Splitting</topic><topic>Vertical mixing</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Dandan</creatorcontrib><creatorcontrib>Alwe, Hariprasad D</creatorcontrib><creatorcontrib>Millet, Dylan B</creatorcontrib><creatorcontrib>Bottorff, Brandon</creatorcontrib><creatorcontrib>Lew, Michelle</creatorcontrib><creatorcontrib>Stevens, Philip S</creatorcontrib><creatorcontrib>Shutter, Joshua D</creatorcontrib><creatorcontrib>Cox, Joshua L</creatorcontrib><creatorcontrib>Keutsch, Frank N</creatorcontrib><creatorcontrib>Shi, Qianwen</creatorcontrib><creatorcontrib>Kavassalis, Sarah C</creatorcontrib><creatorcontrib>Murphy, Jennifer G</creatorcontrib><creatorcontrib>Vasquez, Krystal T</creatorcontrib><creatorcontrib>Allen, Hannah M</creatorcontrib><creatorcontrib>Praske, Eric</creatorcontrib><creatorcontrib>Crounse, John D</creatorcontrib><creatorcontrib>Wennberg, Paul O</creatorcontrib><creatorcontrib>Shepson, Paul B</creatorcontrib><creatorcontrib>Bui, Alexander A. T</creatorcontrib><creatorcontrib>Wallace, Henry W</creatorcontrib><creatorcontrib>Griffin, Robert J</creatorcontrib><creatorcontrib>May, Nathaniel W</creatorcontrib><creatorcontrib>Connor, Megan</creatorcontrib><creatorcontrib>Slade, Jonathan H</creatorcontrib><creatorcontrib>Pratt, Kerri A</creatorcontrib><creatorcontrib>Wood, Ezra C</creatorcontrib><creatorcontrib>Rollings, Mathew</creatorcontrib><creatorcontrib>Deming, Benjamin L</creatorcontrib><creatorcontrib>Anderson, Daniel C</creatorcontrib><creatorcontrib>Steiner, Allison L</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geoscientific Model Development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Dandan</au><au>Alwe, Hariprasad D</au><au>Millet, Dylan B</au><au>Bottorff, Brandon</au><au>Lew, Michelle</au><au>Stevens, Philip S</au><au>Shutter, Joshua D</au><au>Cox, Joshua L</au><au>Keutsch, Frank N</au><au>Shi, Qianwen</au><au>Kavassalis, Sarah C</au><au>Murphy, Jennifer G</au><au>Vasquez, Krystal T</au><au>Allen, Hannah M</au><au>Praske, Eric</au><au>Crounse, John D</au><au>Wennberg, Paul O</au><au>Shepson, Paul B</au><au>Bui, Alexander A. T</au><au>Wallace, Henry W</au><au>Griffin, Robert J</au><au>May, Nathaniel W</au><au>Connor, Megan</au><au>Slade, Jonathan H</au><au>Pratt, Kerri A</au><au>Wood, Ezra C</au><au>Rollings, Mathew</au><au>Deming, Benjamin L</au><au>Anderson, Daniel C</au><au>Steiner, Allison L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FORest Canopy Atmosphere Transfer (FORCAsT) 2.0: model updates and evaluation with observations at a mixed forest site</atitle><jtitle>Geoscientific Model Development</jtitle><date>2021-10-21</date><risdate>2021</risdate><volume>14</volume><issue>10</issue><spage>6309</spage><epage>6329</epage><pages>6309-6329</pages><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><eissn>1991-9603</eissn><eissn>1991-962X</eissn><abstract>The FORCAsT (FORest Canopy Atmosphere Transfer) model version 1.0 is updated to FORCAsT 2.0 by implementing five major changes, including (1) a change to the operator splitting, separating chemistry from emission and dry deposition, which reduces the run time of the gas-phase chemistry by 70 % and produces a more realistic in-canopy profile for isoprene; (2) a modification of the eddy diffusivity parameterization to produce greater and more realistic vertical mixing in the boundary layer, which ameliorates the unrealistic simulated end-of-day peaks in isoprene under well-mixed conditions and improves daytime air temperature; (3) updates to dry deposition velocities with available measurements; (4) implementation of the Reduced Caltech Isoprene Mechanism (RCIM) to reflect the current knowledge of isoprene oxidation; and (5) extension of the aerosol module to include isoprene-derived secondary organic aerosol (iSOA) formation. Along with the operator splitting, modified vertical mixing, and dry deposition, RCIM improves the estimation of first-generation isoprene oxidation products (methyl vinyl ketone and methacrolein) and some second-generation products (such as isoprene epoxydiols). Inclusion of isoprene in the aerosol module in FORCAsT 2.0 leads to a 7 % mass yield of iSOA. The most important iSOA precursors are IEPOX and tetrafunctionals, which together account for >86 % of total iSOA. The iSOA formed from organic nitrates is more important in the canopy, accounting for 11 % of the total iSOA. The tetrafunctionals compose up to 23 % of the total iSOA formation, highlighting the importance of the fate (i.e., dry deposition and gas-phase chemistry) of later-generation isoprene oxidation products in estimating iSOA formation.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/gmd-14-6309-2021</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-8291-8242</orcidid><orcidid>https://orcid.org/0000-0003-4707-2290</orcidid><orcidid>https://orcid.org/0000-0003-4540-4212</orcidid><orcidid>https://orcid.org/0000-0003-3076-125X</orcidid><orcidid>https://orcid.org/0000-0002-9533-215X</orcidid><orcidid>https://orcid.org/0000-0003-3690-0046</orcidid><orcidid>https://orcid.org/0000-0002-9826-9811</orcidid><orcidid>https://orcid.org/0000-0002-6126-3854</orcidid><orcidid>https://orcid.org/0000-0001-9899-4215</orcidid><orcidid>https://orcid.org/0000-0001-8865-5463</orcidid><orcidid>https://orcid.org/0000-0002-1205-1564</orcidid><orcidid>https://orcid.org/0000-0001-5443-729X</orcidid><orcidid>https://orcid.org/0000-0002-5597-6233</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1991-9603 |
ispartof | Geoscientific Model Development, 2021-10, Vol.14 (10), p.6309-6329 |
issn | 1991-9603 1991-959X 1991-962X 1991-9603 1991-962X |
language | eng |
recordid | cdi_proquest_journals_2583768795 |
source | Publicly Available Content (ProQuest) |
subjects | Aerosols Air temperature Atmosphere Atmospheric boundary layer Atmospheric chemistry Boundary layers Canopies Canopy Chemical reactions Chemistry Deposition Dry deposition Eddy diffusion Eddy diffusivity Forests Gases Isoprene Ketones Modules Nitrates Organic nitrates Oxidation Parameterization Plant cover Secondary aerosols Splitting Vertical mixing VOCs Volatile organic compounds |
title | FORest Canopy Atmosphere Transfer (FORCAsT) 2.0: model updates and evaluation with observations at a mixed forest site |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FORest%20Canopy%20Atmosphere%20Transfer%20(FORCAsT)%202.0:%20model%20updates%20and%20evaluation%20with%20observations%20at%20a%20mixed%20forest%20site&rft.jtitle=Geoscientific%20Model%20Development&rft.au=Wei,%20Dandan&rft.date=2021-10-21&rft.volume=14&rft.issue=10&rft.spage=6309&rft.epage=6329&rft.pages=6309-6329&rft.issn=1991-9603&rft.eissn=1991-9603&rft_id=info:doi/10.5194/gmd-14-6309-2021&rft_dat=%3Cgale_doaj_%3EA679774608%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-99294717d1003197c1b015fe41eea20e5d90bec46cfa78fb8d39d4add61688543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583768795&rft_id=info:pmid/&rft_galeid=A679774608&rfr_iscdi=true |