Loading…
Terraces mapping by using deep learning approach from remote sensing images and digital elevation models
Terraces are striking artificial landforms on slopes and are widely distributed in the world. Terraces are vital to soil and water conservation and agricultural production. However, the automatic extraction of terraces entails certain drawbacks, such as low accuracy and poor generalization ability....
Saved in:
Published in: | Transactions in GIS 2021-10, Vol.25 (5), p.2438-2454 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3014-952f1cb2d3f99e59b2f45e6d9c4794a962d977162c5d5a67d6e4e47ceafac3133 |
---|---|
cites | cdi_FETCH-LOGICAL-c3014-952f1cb2d3f99e59b2f45e6d9c4794a962d977162c5d5a67d6e4e47ceafac3133 |
container_end_page | 2454 |
container_issue | 5 |
container_start_page | 2438 |
container_title | Transactions in GIS |
container_volume | 25 |
creator | Zhao, Fei Xiong, Li‐Yang Wang, Chun Wang, Hao‐Ran Wei, Hong Tang, Guo‐An |
description | Terraces are striking artificial landforms on slopes and are widely distributed in the world. Terraces are vital to soil and water conservation and agricultural production. However, the automatic extraction of terraces entails certain drawbacks, such as low accuracy and poor generalization ability. This study proposes a novel approach to automatically extract terraces from remote sensing images and digital elevation models (DEMs) with high precision. First, terrace samples with annotated images are collected to train the model. Then, three sample areas with varying field conditions in the Loess Plateau are selected as the experimental data to extract the terraces. DEMs are used to eliminate the noise. Subsequently, the visual interpretation results are used to evaluate the accuracy of the extraction results. Furthermore, the proposed approach is compared with the spectral angle mapper approach. Results indicate the advantages of adopting the proposed approach, which is flexible and applicable to complex terrace conditions. |
doi_str_mv | 10.1111/tgis.12824 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583786115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583786115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3014-952f1cb2d3f99e59b2f45e6d9c4794a962d977162c5d5a67d6e4e47ceafac3133</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhi0EEqVw4QkscUNKiZfY8RFVUCpV4kA5W649SVNlw05BfXuchjNzmRnNN9uP0D1JFyTa01BWYUFoTvkFmhEuZKKEJJcxZoIkROT0Gt2EcEjTlHMlZ2i_Be-NhYAb0_dVW-LdCR_DGDiAHtdgfDtmseo7Y_e48F2DPTTdADhAe0arxpRxhGkddlVZDabGUMO3GaquxU3noA636KowdYC7Pz9Hn68v2-VbsnlfrZfPm8SylPBEZbQgdkcdK5SCTO1owTMQTlkuFTdKUKekJILazGVGSCeAA5cWTGEsI4zN0cM0N577dYQw6EN39G1cqWmWM5kLQrJIPU6U9V0IHgrd-_iEP2mS6lFJPSqpz0pGmEzwT1XD6R9Sb1frj6nnF4YQd60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583786115</pqid></control><display><type>article</type><title>Terraces mapping by using deep learning approach from remote sensing images and digital elevation models</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zhao, Fei ; Xiong, Li‐Yang ; Wang, Chun ; Wang, Hao‐Ran ; Wei, Hong ; Tang, Guo‐An</creator><creatorcontrib>Zhao, Fei ; Xiong, Li‐Yang ; Wang, Chun ; Wang, Hao‐Ran ; Wei, Hong ; Tang, Guo‐An</creatorcontrib><description>Terraces are striking artificial landforms on slopes and are widely distributed in the world. Terraces are vital to soil and water conservation and agricultural production. However, the automatic extraction of terraces entails certain drawbacks, such as low accuracy and poor generalization ability. This study proposes a novel approach to automatically extract terraces from remote sensing images and digital elevation models (DEMs) with high precision. First, terrace samples with annotated images are collected to train the model. Then, three sample areas with varying field conditions in the Loess Plateau are selected as the experimental data to extract the terraces. DEMs are used to eliminate the noise. Subsequently, the visual interpretation results are used to evaluate the accuracy of the extraction results. Furthermore, the proposed approach is compared with the spectral angle mapper approach. Results indicate the advantages of adopting the proposed approach, which is flexible and applicable to complex terrace conditions.</description><identifier>ISSN: 1361-1682</identifier><identifier>EISSN: 1467-9671</identifier><identifier>DOI: 10.1111/tgis.12824</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Agricultural production ; Deep learning ; Digital Elevation Models ; Digital imaging ; Landforms ; Remote sensing ; Soil conservation ; Soil water ; Terraces ; Water conservation</subject><ispartof>Transactions in GIS, 2021-10, Vol.25 (5), p.2438-2454</ispartof><rights>2021 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3014-952f1cb2d3f99e59b2f45e6d9c4794a962d977162c5d5a67d6e4e47ceafac3133</citedby><cites>FETCH-LOGICAL-c3014-952f1cb2d3f99e59b2f45e6d9c4794a962d977162c5d5a67d6e4e47ceafac3133</cites><orcidid>0000-0001-7930-3319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Fei</creatorcontrib><creatorcontrib>Xiong, Li‐Yang</creatorcontrib><creatorcontrib>Wang, Chun</creatorcontrib><creatorcontrib>Wang, Hao‐Ran</creatorcontrib><creatorcontrib>Wei, Hong</creatorcontrib><creatorcontrib>Tang, Guo‐An</creatorcontrib><title>Terraces mapping by using deep learning approach from remote sensing images and digital elevation models</title><title>Transactions in GIS</title><description>Terraces are striking artificial landforms on slopes and are widely distributed in the world. Terraces are vital to soil and water conservation and agricultural production. However, the automatic extraction of terraces entails certain drawbacks, such as low accuracy and poor generalization ability. This study proposes a novel approach to automatically extract terraces from remote sensing images and digital elevation models (DEMs) with high precision. First, terrace samples with annotated images are collected to train the model. Then, three sample areas with varying field conditions in the Loess Plateau are selected as the experimental data to extract the terraces. DEMs are used to eliminate the noise. Subsequently, the visual interpretation results are used to evaluate the accuracy of the extraction results. Furthermore, the proposed approach is compared with the spectral angle mapper approach. Results indicate the advantages of adopting the proposed approach, which is flexible and applicable to complex terrace conditions.</description><subject>Accuracy</subject><subject>Agricultural production</subject><subject>Deep learning</subject><subject>Digital Elevation Models</subject><subject>Digital imaging</subject><subject>Landforms</subject><subject>Remote sensing</subject><subject>Soil conservation</subject><subject>Soil water</subject><subject>Terraces</subject><subject>Water conservation</subject><issn>1361-1682</issn><issn>1467-9671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAQhi0EEqVw4QkscUNKiZfY8RFVUCpV4kA5W649SVNlw05BfXuchjNzmRnNN9uP0D1JFyTa01BWYUFoTvkFmhEuZKKEJJcxZoIkROT0Gt2EcEjTlHMlZ2i_Be-NhYAb0_dVW-LdCR_DGDiAHtdgfDtmseo7Y_e48F2DPTTdADhAe0arxpRxhGkddlVZDabGUMO3GaquxU3noA636KowdYC7Pz9Hn68v2-VbsnlfrZfPm8SylPBEZbQgdkcdK5SCTO1owTMQTlkuFTdKUKekJILazGVGSCeAA5cWTGEsI4zN0cM0N577dYQw6EN39G1cqWmWM5kLQrJIPU6U9V0IHgrd-_iEP2mS6lFJPSqpz0pGmEzwT1XD6R9Sb1frj6nnF4YQd60</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Zhao, Fei</creator><creator>Xiong, Li‐Yang</creator><creator>Wang, Chun</creator><creator>Wang, Hao‐Ran</creator><creator>Wei, Hong</creator><creator>Tang, Guo‐An</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7930-3319</orcidid></search><sort><creationdate>202110</creationdate><title>Terraces mapping by using deep learning approach from remote sensing images and digital elevation models</title><author>Zhao, Fei ; Xiong, Li‐Yang ; Wang, Chun ; Wang, Hao‐Ran ; Wei, Hong ; Tang, Guo‐An</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3014-952f1cb2d3f99e59b2f45e6d9c4794a962d977162c5d5a67d6e4e47ceafac3133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Agricultural production</topic><topic>Deep learning</topic><topic>Digital Elevation Models</topic><topic>Digital imaging</topic><topic>Landforms</topic><topic>Remote sensing</topic><topic>Soil conservation</topic><topic>Soil water</topic><topic>Terraces</topic><topic>Water conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Fei</creatorcontrib><creatorcontrib>Xiong, Li‐Yang</creatorcontrib><creatorcontrib>Wang, Chun</creatorcontrib><creatorcontrib>Wang, Hao‐Ran</creatorcontrib><creatorcontrib>Wei, Hong</creatorcontrib><creatorcontrib>Tang, Guo‐An</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Transactions in GIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Fei</au><au>Xiong, Li‐Yang</au><au>Wang, Chun</au><au>Wang, Hao‐Ran</au><au>Wei, Hong</au><au>Tang, Guo‐An</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Terraces mapping by using deep learning approach from remote sensing images and digital elevation models</atitle><jtitle>Transactions in GIS</jtitle><date>2021-10</date><risdate>2021</risdate><volume>25</volume><issue>5</issue><spage>2438</spage><epage>2454</epage><pages>2438-2454</pages><issn>1361-1682</issn><eissn>1467-9671</eissn><abstract>Terraces are striking artificial landforms on slopes and are widely distributed in the world. Terraces are vital to soil and water conservation and agricultural production. However, the automatic extraction of terraces entails certain drawbacks, such as low accuracy and poor generalization ability. This study proposes a novel approach to automatically extract terraces from remote sensing images and digital elevation models (DEMs) with high precision. First, terrace samples with annotated images are collected to train the model. Then, three sample areas with varying field conditions in the Loess Plateau are selected as the experimental data to extract the terraces. DEMs are used to eliminate the noise. Subsequently, the visual interpretation results are used to evaluate the accuracy of the extraction results. Furthermore, the proposed approach is compared with the spectral angle mapper approach. Results indicate the advantages of adopting the proposed approach, which is flexible and applicable to complex terrace conditions.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/tgis.12824</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7930-3319</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-1682 |
ispartof | Transactions in GIS, 2021-10, Vol.25 (5), p.2438-2454 |
issn | 1361-1682 1467-9671 |
language | eng |
recordid | cdi_proquest_journals_2583786115 |
source | Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Wiley-Blackwell Read & Publish Collection |
subjects | Accuracy Agricultural production Deep learning Digital Elevation Models Digital imaging Landforms Remote sensing Soil conservation Soil water Terraces Water conservation |
title | Terraces mapping by using deep learning approach from remote sensing images and digital elevation models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Terraces%20mapping%20by%20using%20deep%20learning%20approach%20from%20remote%20sensing%20images%20and%20digital%20elevation%20models&rft.jtitle=Transactions%20in%20GIS&rft.au=Zhao,%20Fei&rft.date=2021-10&rft.volume=25&rft.issue=5&rft.spage=2438&rft.epage=2454&rft.pages=2438-2454&rft.issn=1361-1682&rft.eissn=1467-9671&rft_id=info:doi/10.1111/tgis.12824&rft_dat=%3Cproquest_cross%3E2583786115%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3014-952f1cb2d3f99e59b2f45e6d9c4794a962d977162c5d5a67d6e4e47ceafac3133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583786115&rft_id=info:pmid/&rfr_iscdi=true |