Loading…

Terraces mapping by using deep learning approach from remote sensing images and digital elevation models

Terraces are striking artificial landforms on slopes and are widely distributed in the world. Terraces are vital to soil and water conservation and agricultural production. However, the automatic extraction of terraces entails certain drawbacks, such as low accuracy and poor generalization ability....

Full description

Saved in:
Bibliographic Details
Published in:Transactions in GIS 2021-10, Vol.25 (5), p.2438-2454
Main Authors: Zhao, Fei, Xiong, Li‐Yang, Wang, Chun, Wang, Hao‐Ran, Wei, Hong, Tang, Guo‐An
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3014-952f1cb2d3f99e59b2f45e6d9c4794a962d977162c5d5a67d6e4e47ceafac3133
cites cdi_FETCH-LOGICAL-c3014-952f1cb2d3f99e59b2f45e6d9c4794a962d977162c5d5a67d6e4e47ceafac3133
container_end_page 2454
container_issue 5
container_start_page 2438
container_title Transactions in GIS
container_volume 25
creator Zhao, Fei
Xiong, Li‐Yang
Wang, Chun
Wang, Hao‐Ran
Wei, Hong
Tang, Guo‐An
description Terraces are striking artificial landforms on slopes and are widely distributed in the world. Terraces are vital to soil and water conservation and agricultural production. However, the automatic extraction of terraces entails certain drawbacks, such as low accuracy and poor generalization ability. This study proposes a novel approach to automatically extract terraces from remote sensing images and digital elevation models (DEMs) with high precision. First, terrace samples with annotated images are collected to train the model. Then, three sample areas with varying field conditions in the Loess Plateau are selected as the experimental data to extract the terraces. DEMs are used to eliminate the noise. Subsequently, the visual interpretation results are used to evaluate the accuracy of the extraction results. Furthermore, the proposed approach is compared with the spectral angle mapper approach. Results indicate the advantages of adopting the proposed approach, which is flexible and applicable to complex terrace conditions.
doi_str_mv 10.1111/tgis.12824
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583786115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583786115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3014-952f1cb2d3f99e59b2f45e6d9c4794a962d977162c5d5a67d6e4e47ceafac3133</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhi0EEqVw4QkscUNKiZfY8RFVUCpV4kA5W649SVNlw05BfXuchjNzmRnNN9uP0D1JFyTa01BWYUFoTvkFmhEuZKKEJJcxZoIkROT0Gt2EcEjTlHMlZ2i_Be-NhYAb0_dVW-LdCR_DGDiAHtdgfDtmseo7Y_e48F2DPTTdADhAe0arxpRxhGkddlVZDabGUMO3GaquxU3noA636KowdYC7Pz9Hn68v2-VbsnlfrZfPm8SylPBEZbQgdkcdK5SCTO1owTMQTlkuFTdKUKekJILazGVGSCeAA5cWTGEsI4zN0cM0N577dYQw6EN39G1cqWmWM5kLQrJIPU6U9V0IHgrd-_iEP2mS6lFJPSqpz0pGmEzwT1XD6R9Sb1frj6nnF4YQd60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583786115</pqid></control><display><type>article</type><title>Terraces mapping by using deep learning approach from remote sensing images and digital elevation models</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zhao, Fei ; Xiong, Li‐Yang ; Wang, Chun ; Wang, Hao‐Ran ; Wei, Hong ; Tang, Guo‐An</creator><creatorcontrib>Zhao, Fei ; Xiong, Li‐Yang ; Wang, Chun ; Wang, Hao‐Ran ; Wei, Hong ; Tang, Guo‐An</creatorcontrib><description>Terraces are striking artificial landforms on slopes and are widely distributed in the world. Terraces are vital to soil and water conservation and agricultural production. However, the automatic extraction of terraces entails certain drawbacks, such as low accuracy and poor generalization ability. This study proposes a novel approach to automatically extract terraces from remote sensing images and digital elevation models (DEMs) with high precision. First, terrace samples with annotated images are collected to train the model. Then, three sample areas with varying field conditions in the Loess Plateau are selected as the experimental data to extract the terraces. DEMs are used to eliminate the noise. Subsequently, the visual interpretation results are used to evaluate the accuracy of the extraction results. Furthermore, the proposed approach is compared with the spectral angle mapper approach. Results indicate the advantages of adopting the proposed approach, which is flexible and applicable to complex terrace conditions.</description><identifier>ISSN: 1361-1682</identifier><identifier>EISSN: 1467-9671</identifier><identifier>DOI: 10.1111/tgis.12824</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Agricultural production ; Deep learning ; Digital Elevation Models ; Digital imaging ; Landforms ; Remote sensing ; Soil conservation ; Soil water ; Terraces ; Water conservation</subject><ispartof>Transactions in GIS, 2021-10, Vol.25 (5), p.2438-2454</ispartof><rights>2021 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3014-952f1cb2d3f99e59b2f45e6d9c4794a962d977162c5d5a67d6e4e47ceafac3133</citedby><cites>FETCH-LOGICAL-c3014-952f1cb2d3f99e59b2f45e6d9c4794a962d977162c5d5a67d6e4e47ceafac3133</cites><orcidid>0000-0001-7930-3319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Fei</creatorcontrib><creatorcontrib>Xiong, Li‐Yang</creatorcontrib><creatorcontrib>Wang, Chun</creatorcontrib><creatorcontrib>Wang, Hao‐Ran</creatorcontrib><creatorcontrib>Wei, Hong</creatorcontrib><creatorcontrib>Tang, Guo‐An</creatorcontrib><title>Terraces mapping by using deep learning approach from remote sensing images and digital elevation models</title><title>Transactions in GIS</title><description>Terraces are striking artificial landforms on slopes and are widely distributed in the world. Terraces are vital to soil and water conservation and agricultural production. However, the automatic extraction of terraces entails certain drawbacks, such as low accuracy and poor generalization ability. This study proposes a novel approach to automatically extract terraces from remote sensing images and digital elevation models (DEMs) with high precision. First, terrace samples with annotated images are collected to train the model. Then, three sample areas with varying field conditions in the Loess Plateau are selected as the experimental data to extract the terraces. DEMs are used to eliminate the noise. Subsequently, the visual interpretation results are used to evaluate the accuracy of the extraction results. Furthermore, the proposed approach is compared with the spectral angle mapper approach. Results indicate the advantages of adopting the proposed approach, which is flexible and applicable to complex terrace conditions.</description><subject>Accuracy</subject><subject>Agricultural production</subject><subject>Deep learning</subject><subject>Digital Elevation Models</subject><subject>Digital imaging</subject><subject>Landforms</subject><subject>Remote sensing</subject><subject>Soil conservation</subject><subject>Soil water</subject><subject>Terraces</subject><subject>Water conservation</subject><issn>1361-1682</issn><issn>1467-9671</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAQhi0EEqVw4QkscUNKiZfY8RFVUCpV4kA5W649SVNlw05BfXuchjNzmRnNN9uP0D1JFyTa01BWYUFoTvkFmhEuZKKEJJcxZoIkROT0Gt2EcEjTlHMlZ2i_Be-NhYAb0_dVW-LdCR_DGDiAHtdgfDtmseo7Y_e48F2DPTTdADhAe0arxpRxhGkddlVZDabGUMO3GaquxU3noA636KowdYC7Pz9Hn68v2-VbsnlfrZfPm8SylPBEZbQgdkcdK5SCTO1owTMQTlkuFTdKUKekJILazGVGSCeAA5cWTGEsI4zN0cM0N577dYQw6EN39G1cqWmWM5kLQrJIPU6U9V0IHgrd-_iEP2mS6lFJPSqpz0pGmEzwT1XD6R9Sb1frj6nnF4YQd60</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Zhao, Fei</creator><creator>Xiong, Li‐Yang</creator><creator>Wang, Chun</creator><creator>Wang, Hao‐Ran</creator><creator>Wei, Hong</creator><creator>Tang, Guo‐An</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7930-3319</orcidid></search><sort><creationdate>202110</creationdate><title>Terraces mapping by using deep learning approach from remote sensing images and digital elevation models</title><author>Zhao, Fei ; Xiong, Li‐Yang ; Wang, Chun ; Wang, Hao‐Ran ; Wei, Hong ; Tang, Guo‐An</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3014-952f1cb2d3f99e59b2f45e6d9c4794a962d977162c5d5a67d6e4e47ceafac3133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Agricultural production</topic><topic>Deep learning</topic><topic>Digital Elevation Models</topic><topic>Digital imaging</topic><topic>Landforms</topic><topic>Remote sensing</topic><topic>Soil conservation</topic><topic>Soil water</topic><topic>Terraces</topic><topic>Water conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Fei</creatorcontrib><creatorcontrib>Xiong, Li‐Yang</creatorcontrib><creatorcontrib>Wang, Chun</creatorcontrib><creatorcontrib>Wang, Hao‐Ran</creatorcontrib><creatorcontrib>Wei, Hong</creatorcontrib><creatorcontrib>Tang, Guo‐An</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Transactions in GIS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Fei</au><au>Xiong, Li‐Yang</au><au>Wang, Chun</au><au>Wang, Hao‐Ran</au><au>Wei, Hong</au><au>Tang, Guo‐An</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Terraces mapping by using deep learning approach from remote sensing images and digital elevation models</atitle><jtitle>Transactions in GIS</jtitle><date>2021-10</date><risdate>2021</risdate><volume>25</volume><issue>5</issue><spage>2438</spage><epage>2454</epage><pages>2438-2454</pages><issn>1361-1682</issn><eissn>1467-9671</eissn><abstract>Terraces are striking artificial landforms on slopes and are widely distributed in the world. Terraces are vital to soil and water conservation and agricultural production. However, the automatic extraction of terraces entails certain drawbacks, such as low accuracy and poor generalization ability. This study proposes a novel approach to automatically extract terraces from remote sensing images and digital elevation models (DEMs) with high precision. First, terrace samples with annotated images are collected to train the model. Then, three sample areas with varying field conditions in the Loess Plateau are selected as the experimental data to extract the terraces. DEMs are used to eliminate the noise. Subsequently, the visual interpretation results are used to evaluate the accuracy of the extraction results. Furthermore, the proposed approach is compared with the spectral angle mapper approach. Results indicate the advantages of adopting the proposed approach, which is flexible and applicable to complex terrace conditions.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/tgis.12824</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7930-3319</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1361-1682
ispartof Transactions in GIS, 2021-10, Vol.25 (5), p.2438-2454
issn 1361-1682
1467-9671
language eng
recordid cdi_proquest_journals_2583786115
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Wiley-Blackwell Read & Publish Collection
subjects Accuracy
Agricultural production
Deep learning
Digital Elevation Models
Digital imaging
Landforms
Remote sensing
Soil conservation
Soil water
Terraces
Water conservation
title Terraces mapping by using deep learning approach from remote sensing images and digital elevation models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A37%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Terraces%20mapping%20by%20using%20deep%20learning%20approach%20from%20remote%20sensing%20images%20and%20digital%20elevation%20models&rft.jtitle=Transactions%20in%20GIS&rft.au=Zhao,%20Fei&rft.date=2021-10&rft.volume=25&rft.issue=5&rft.spage=2438&rft.epage=2454&rft.pages=2438-2454&rft.issn=1361-1682&rft.eissn=1467-9671&rft_id=info:doi/10.1111/tgis.12824&rft_dat=%3Cproquest_cross%3E2583786115%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3014-952f1cb2d3f99e59b2f45e6d9c4794a962d977162c5d5a67d6e4e47ceafac3133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583786115&rft_id=info:pmid/&rfr_iscdi=true