Loading…
Handwritten Word Recognition Using Fuzzy Matching Degrees
Handwritten text recognition systems interpret the scanned script images as text composed of letters. In this paper, efficient offline methods using fuzzy degrees, as well as interval fuzzy degrees of type-2, are proposed to recognize letters beforehand decomposed into strokes. For such strokes, the...
Saved in:
Published in: | Journal of Artificial Intelligence and Soft Computing Research 2021-07, Vol.11 (3), p.229-242 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-b32e077274aa92060d43bdd20336da7dae523b3bc5dc2b05f725d305189816533 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-b32e077274aa92060d43bdd20336da7dae523b3bc5dc2b05f725d305189816533 |
container_end_page | 242 |
container_issue | 3 |
container_start_page | 229 |
container_title | Journal of Artificial Intelligence and Soft Computing Research |
container_volume | 11 |
creator | Wróbel, Michał Starczewski, Janusz T. Fijałkowska, Justyna Siwocha, Agnieszka Napoli, Christian |
description | Handwritten text recognition systems interpret the scanned script images as text composed of letters. In this paper, efficient offline methods using fuzzy degrees, as well as interval fuzzy degrees of type-2, are proposed to recognize letters beforehand decomposed into strokes. For such strokes, the first stage methods are used to create a set of hypotheses as to whether a group of strokes matches letter or digit patterns. Subsequently, the second-stage methods are employed to select the most promising set of hypotheses with the use of fuzzy degrees. In a primary version of the second-stage system, standard fuzzy memberships are used to measure compatibility between strokes and character patterns. As an extension of the system thus created, interval type-2 fuzzy degrees are employed to perform a selection of hypotheses that fit multiple handwriting typefaces. |
doi_str_mv | 10.2478/jaiscr-2021-0014 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583814940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583814940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-b32e077274aa92060d43bdd20336da7dae523b3bc5dc2b05f725d305189816533</originalsourceid><addsrcrecordid>eNpNkMFLwzAYxYMoOObuHgueq1--JG1zlOmcMBHE4TGkSVpbtJ1Jimx__VbqwdN7Dx7vwY-Qawq3yPPirtVNMD5FQJoCUH5GZsi5TDMu5fk_f0kWIbQAgFJwwGxG5Fp39tc3Mbou-ei9Td6c6euuiU3fJdvQdHWyGg6HffKio_kc44OrvXPhilxU-iu4xZ_OyXb1-L5cp5vXp-fl_SY1LCtiWjJ0kOeYc60lQgaWs9JaBMYyq3OrnUBWstIIa7AEUeUoLANBC1nQTDA2JzfT7s73P4MLUbX94LvTpUJRsIJyyeHUgqllfB-Cd5Xa-eZb-72ioEZGamKkRkZqZMSOjelZmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583814940</pqid></control><display><type>article</type><title>Handwritten Word Recognition Using Fuzzy Matching Degrees</title><source>Publicly Available Content (ProQuest)</source><creator>Wróbel, Michał ; Starczewski, Janusz T. ; Fijałkowska, Justyna ; Siwocha, Agnieszka ; Napoli, Christian</creator><creatorcontrib>Wróbel, Michał ; Starczewski, Janusz T. ; Fijałkowska, Justyna ; Siwocha, Agnieszka ; Napoli, Christian</creatorcontrib><description>Handwritten text recognition systems interpret the scanned script images as text composed of letters. In this paper, efficient offline methods using fuzzy degrees, as well as interval fuzzy degrees of type-2, are proposed to recognize letters beforehand decomposed into strokes. For such strokes, the first stage methods are used to create a set of hypotheses as to whether a group of strokes matches letter or digit patterns. Subsequently, the second-stage methods are employed to select the most promising set of hypotheses with the use of fuzzy degrees. In a primary version of the second-stage system, standard fuzzy memberships are used to measure compatibility between strokes and character patterns. As an extension of the system thus created, interval type-2 fuzzy degrees are employed to perform a selection of hypotheses that fit multiple handwriting typefaces.</description><identifier>ISSN: 2449-6499</identifier><identifier>EISSN: 2449-6499</identifier><identifier>DOI: 10.2478/jaiscr-2021-0014</identifier><language>eng</language><publisher>Warsaw: De Gruyter Poland</publisher><subject>Handwriting recognition ; Hypotheses ; Object recognition ; Typefaces</subject><ispartof>Journal of Artificial Intelligence and Soft Computing Research, 2021-07, Vol.11 (3), p.229-242</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-b32e077274aa92060d43bdd20336da7dae523b3bc5dc2b05f725d305189816533</citedby><cites>FETCH-LOGICAL-c368t-b32e077274aa92060d43bdd20336da7dae523b3bc5dc2b05f725d305189816533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2583814940?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Wróbel, Michał</creatorcontrib><creatorcontrib>Starczewski, Janusz T.</creatorcontrib><creatorcontrib>Fijałkowska, Justyna</creatorcontrib><creatorcontrib>Siwocha, Agnieszka</creatorcontrib><creatorcontrib>Napoli, Christian</creatorcontrib><title>Handwritten Word Recognition Using Fuzzy Matching Degrees</title><title>Journal of Artificial Intelligence and Soft Computing Research</title><description>Handwritten text recognition systems interpret the scanned script images as text composed of letters. In this paper, efficient offline methods using fuzzy degrees, as well as interval fuzzy degrees of type-2, are proposed to recognize letters beforehand decomposed into strokes. For such strokes, the first stage methods are used to create a set of hypotheses as to whether a group of strokes matches letter or digit patterns. Subsequently, the second-stage methods are employed to select the most promising set of hypotheses with the use of fuzzy degrees. In a primary version of the second-stage system, standard fuzzy memberships are used to measure compatibility between strokes and character patterns. As an extension of the system thus created, interval type-2 fuzzy degrees are employed to perform a selection of hypotheses that fit multiple handwriting typefaces.</description><subject>Handwriting recognition</subject><subject>Hypotheses</subject><subject>Object recognition</subject><subject>Typefaces</subject><issn>2449-6499</issn><issn>2449-6499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkMFLwzAYxYMoOObuHgueq1--JG1zlOmcMBHE4TGkSVpbtJ1Jimx__VbqwdN7Dx7vwY-Qawq3yPPirtVNMD5FQJoCUH5GZsi5TDMu5fk_f0kWIbQAgFJwwGxG5Fp39tc3Mbou-ei9Td6c6euuiU3fJdvQdHWyGg6HffKio_kc44OrvXPhilxU-iu4xZ_OyXb1-L5cp5vXp-fl_SY1LCtiWjJ0kOeYc60lQgaWs9JaBMYyq3OrnUBWstIIa7AEUeUoLANBC1nQTDA2JzfT7s73P4MLUbX94LvTpUJRsIJyyeHUgqllfB-Cd5Xa-eZb-72ioEZGamKkRkZqZMSOjelZmg</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Wróbel, Michał</creator><creator>Starczewski, Janusz T.</creator><creator>Fijałkowska, Justyna</creator><creator>Siwocha, Agnieszka</creator><creator>Napoli, Christian</creator><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210701</creationdate><title>Handwritten Word Recognition Using Fuzzy Matching Degrees</title><author>Wróbel, Michał ; Starczewski, Janusz T. ; Fijałkowska, Justyna ; Siwocha, Agnieszka ; Napoli, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-b32e077274aa92060d43bdd20336da7dae523b3bc5dc2b05f725d305189816533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Handwriting recognition</topic><topic>Hypotheses</topic><topic>Object recognition</topic><topic>Typefaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wróbel, Michał</creatorcontrib><creatorcontrib>Starczewski, Janusz T.</creatorcontrib><creatorcontrib>Fijałkowska, Justyna</creatorcontrib><creatorcontrib>Siwocha, Agnieszka</creatorcontrib><creatorcontrib>Napoli, Christian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of Artificial Intelligence and Soft Computing Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wróbel, Michał</au><au>Starczewski, Janusz T.</au><au>Fijałkowska, Justyna</au><au>Siwocha, Agnieszka</au><au>Napoli, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Handwritten Word Recognition Using Fuzzy Matching Degrees</atitle><jtitle>Journal of Artificial Intelligence and Soft Computing Research</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>11</volume><issue>3</issue><spage>229</spage><epage>242</epage><pages>229-242</pages><issn>2449-6499</issn><eissn>2449-6499</eissn><abstract>Handwritten text recognition systems interpret the scanned script images as text composed of letters. In this paper, efficient offline methods using fuzzy degrees, as well as interval fuzzy degrees of type-2, are proposed to recognize letters beforehand decomposed into strokes. For such strokes, the first stage methods are used to create a set of hypotheses as to whether a group of strokes matches letter or digit patterns. Subsequently, the second-stage methods are employed to select the most promising set of hypotheses with the use of fuzzy degrees. In a primary version of the second-stage system, standard fuzzy memberships are used to measure compatibility between strokes and character patterns. As an extension of the system thus created, interval type-2 fuzzy degrees are employed to perform a selection of hypotheses that fit multiple handwriting typefaces.</abstract><cop>Warsaw</cop><pub>De Gruyter Poland</pub><doi>10.2478/jaiscr-2021-0014</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2449-6499 |
ispartof | Journal of Artificial Intelligence and Soft Computing Research, 2021-07, Vol.11 (3), p.229-242 |
issn | 2449-6499 2449-6499 |
language | eng |
recordid | cdi_proquest_journals_2583814940 |
source | Publicly Available Content (ProQuest) |
subjects | Handwriting recognition Hypotheses Object recognition Typefaces |
title | Handwritten Word Recognition Using Fuzzy Matching Degrees |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Handwritten%20Word%20Recognition%20Using%20Fuzzy%20Matching%20Degrees&rft.jtitle=Journal%20of%20Artificial%20Intelligence%20and%20Soft%20Computing%20Research&rft.au=Wr%C3%B3bel,%20Micha%C5%82&rft.date=2021-07-01&rft.volume=11&rft.issue=3&rft.spage=229&rft.epage=242&rft.pages=229-242&rft.issn=2449-6499&rft.eissn=2449-6499&rft_id=info:doi/10.2478/jaiscr-2021-0014&rft_dat=%3Cproquest_cross%3E2583814940%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-b32e077274aa92060d43bdd20336da7dae523b3bc5dc2b05f725d305189816533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583814940&rft_id=info:pmid/&rfr_iscdi=true |