Loading…

Handwritten Word Recognition Using Fuzzy Matching Degrees

Handwritten text recognition systems interpret the scanned script images as text composed of letters. In this paper, efficient offline methods using fuzzy degrees, as well as interval fuzzy degrees of type-2, are proposed to recognize letters beforehand decomposed into strokes. For such strokes, the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Artificial Intelligence and Soft Computing Research 2021-07, Vol.11 (3), p.229-242
Main Authors: Wróbel, Michał, Starczewski, Janusz T., Fijałkowska, Justyna, Siwocha, Agnieszka, Napoli, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-b32e077274aa92060d43bdd20336da7dae523b3bc5dc2b05f725d305189816533
cites cdi_FETCH-LOGICAL-c368t-b32e077274aa92060d43bdd20336da7dae523b3bc5dc2b05f725d305189816533
container_end_page 242
container_issue 3
container_start_page 229
container_title Journal of Artificial Intelligence and Soft Computing Research
container_volume 11
creator Wróbel, Michał
Starczewski, Janusz T.
Fijałkowska, Justyna
Siwocha, Agnieszka
Napoli, Christian
description Handwritten text recognition systems interpret the scanned script images as text composed of letters. In this paper, efficient offline methods using fuzzy degrees, as well as interval fuzzy degrees of type-2, are proposed to recognize letters beforehand decomposed into strokes. For such strokes, the first stage methods are used to create a set of hypotheses as to whether a group of strokes matches letter or digit patterns. Subsequently, the second-stage methods are employed to select the most promising set of hypotheses with the use of fuzzy degrees. In a primary version of the second-stage system, standard fuzzy memberships are used to measure compatibility between strokes and character patterns. As an extension of the system thus created, interval type-2 fuzzy degrees are employed to perform a selection of hypotheses that fit multiple handwriting typefaces.
doi_str_mv 10.2478/jaiscr-2021-0014
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583814940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583814940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-b32e077274aa92060d43bdd20336da7dae523b3bc5dc2b05f725d305189816533</originalsourceid><addsrcrecordid>eNpNkMFLwzAYxYMoOObuHgueq1--JG1zlOmcMBHE4TGkSVpbtJ1Jimx__VbqwdN7Dx7vwY-Qawq3yPPirtVNMD5FQJoCUH5GZsi5TDMu5fk_f0kWIbQAgFJwwGxG5Fp39tc3Mbou-ei9Td6c6euuiU3fJdvQdHWyGg6HffKio_kc44OrvXPhilxU-iu4xZ_OyXb1-L5cp5vXp-fl_SY1LCtiWjJ0kOeYc60lQgaWs9JaBMYyq3OrnUBWstIIa7AEUeUoLANBC1nQTDA2JzfT7s73P4MLUbX94LvTpUJRsIJyyeHUgqllfB-Cd5Xa-eZb-72ioEZGamKkRkZqZMSOjelZmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583814940</pqid></control><display><type>article</type><title>Handwritten Word Recognition Using Fuzzy Matching Degrees</title><source>Publicly Available Content (ProQuest)</source><creator>Wróbel, Michał ; Starczewski, Janusz T. ; Fijałkowska, Justyna ; Siwocha, Agnieszka ; Napoli, Christian</creator><creatorcontrib>Wróbel, Michał ; Starczewski, Janusz T. ; Fijałkowska, Justyna ; Siwocha, Agnieszka ; Napoli, Christian</creatorcontrib><description>Handwritten text recognition systems interpret the scanned script images as text composed of letters. In this paper, efficient offline methods using fuzzy degrees, as well as interval fuzzy degrees of type-2, are proposed to recognize letters beforehand decomposed into strokes. For such strokes, the first stage methods are used to create a set of hypotheses as to whether a group of strokes matches letter or digit patterns. Subsequently, the second-stage methods are employed to select the most promising set of hypotheses with the use of fuzzy degrees. In a primary version of the second-stage system, standard fuzzy memberships are used to measure compatibility between strokes and character patterns. As an extension of the system thus created, interval type-2 fuzzy degrees are employed to perform a selection of hypotheses that fit multiple handwriting typefaces.</description><identifier>ISSN: 2449-6499</identifier><identifier>EISSN: 2449-6499</identifier><identifier>DOI: 10.2478/jaiscr-2021-0014</identifier><language>eng</language><publisher>Warsaw: De Gruyter Poland</publisher><subject>Handwriting recognition ; Hypotheses ; Object recognition ; Typefaces</subject><ispartof>Journal of Artificial Intelligence and Soft Computing Research, 2021-07, Vol.11 (3), p.229-242</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-b32e077274aa92060d43bdd20336da7dae523b3bc5dc2b05f725d305189816533</citedby><cites>FETCH-LOGICAL-c368t-b32e077274aa92060d43bdd20336da7dae523b3bc5dc2b05f725d305189816533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2583814940?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Wróbel, Michał</creatorcontrib><creatorcontrib>Starczewski, Janusz T.</creatorcontrib><creatorcontrib>Fijałkowska, Justyna</creatorcontrib><creatorcontrib>Siwocha, Agnieszka</creatorcontrib><creatorcontrib>Napoli, Christian</creatorcontrib><title>Handwritten Word Recognition Using Fuzzy Matching Degrees</title><title>Journal of Artificial Intelligence and Soft Computing Research</title><description>Handwritten text recognition systems interpret the scanned script images as text composed of letters. In this paper, efficient offline methods using fuzzy degrees, as well as interval fuzzy degrees of type-2, are proposed to recognize letters beforehand decomposed into strokes. For such strokes, the first stage methods are used to create a set of hypotheses as to whether a group of strokes matches letter or digit patterns. Subsequently, the second-stage methods are employed to select the most promising set of hypotheses with the use of fuzzy degrees. In a primary version of the second-stage system, standard fuzzy memberships are used to measure compatibility between strokes and character patterns. As an extension of the system thus created, interval type-2 fuzzy degrees are employed to perform a selection of hypotheses that fit multiple handwriting typefaces.</description><subject>Handwriting recognition</subject><subject>Hypotheses</subject><subject>Object recognition</subject><subject>Typefaces</subject><issn>2449-6499</issn><issn>2449-6499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkMFLwzAYxYMoOObuHgueq1--JG1zlOmcMBHE4TGkSVpbtJ1Jimx__VbqwdN7Dx7vwY-Qawq3yPPirtVNMD5FQJoCUH5GZsi5TDMu5fk_f0kWIbQAgFJwwGxG5Fp39tc3Mbou-ei9Td6c6euuiU3fJdvQdHWyGg6HffKio_kc44OrvXPhilxU-iu4xZ_OyXb1-L5cp5vXp-fl_SY1LCtiWjJ0kOeYc60lQgaWs9JaBMYyq3OrnUBWstIIa7AEUeUoLANBC1nQTDA2JzfT7s73P4MLUbX94LvTpUJRsIJyyeHUgqllfB-Cd5Xa-eZb-72ioEZGamKkRkZqZMSOjelZmg</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Wróbel, Michał</creator><creator>Starczewski, Janusz T.</creator><creator>Fijałkowska, Justyna</creator><creator>Siwocha, Agnieszka</creator><creator>Napoli, Christian</creator><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210701</creationdate><title>Handwritten Word Recognition Using Fuzzy Matching Degrees</title><author>Wróbel, Michał ; Starczewski, Janusz T. ; Fijałkowska, Justyna ; Siwocha, Agnieszka ; Napoli, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-b32e077274aa92060d43bdd20336da7dae523b3bc5dc2b05f725d305189816533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Handwriting recognition</topic><topic>Hypotheses</topic><topic>Object recognition</topic><topic>Typefaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wróbel, Michał</creatorcontrib><creatorcontrib>Starczewski, Janusz T.</creatorcontrib><creatorcontrib>Fijałkowska, Justyna</creatorcontrib><creatorcontrib>Siwocha, Agnieszka</creatorcontrib><creatorcontrib>Napoli, Christian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of Artificial Intelligence and Soft Computing Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wróbel, Michał</au><au>Starczewski, Janusz T.</au><au>Fijałkowska, Justyna</au><au>Siwocha, Agnieszka</au><au>Napoli, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Handwritten Word Recognition Using Fuzzy Matching Degrees</atitle><jtitle>Journal of Artificial Intelligence and Soft Computing Research</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>11</volume><issue>3</issue><spage>229</spage><epage>242</epage><pages>229-242</pages><issn>2449-6499</issn><eissn>2449-6499</eissn><abstract>Handwritten text recognition systems interpret the scanned script images as text composed of letters. In this paper, efficient offline methods using fuzzy degrees, as well as interval fuzzy degrees of type-2, are proposed to recognize letters beforehand decomposed into strokes. For such strokes, the first stage methods are used to create a set of hypotheses as to whether a group of strokes matches letter or digit patterns. Subsequently, the second-stage methods are employed to select the most promising set of hypotheses with the use of fuzzy degrees. In a primary version of the second-stage system, standard fuzzy memberships are used to measure compatibility between strokes and character patterns. As an extension of the system thus created, interval type-2 fuzzy degrees are employed to perform a selection of hypotheses that fit multiple handwriting typefaces.</abstract><cop>Warsaw</cop><pub>De Gruyter Poland</pub><doi>10.2478/jaiscr-2021-0014</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2449-6499
ispartof Journal of Artificial Intelligence and Soft Computing Research, 2021-07, Vol.11 (3), p.229-242
issn 2449-6499
2449-6499
language eng
recordid cdi_proquest_journals_2583814940
source Publicly Available Content (ProQuest)
subjects Handwriting recognition
Hypotheses
Object recognition
Typefaces
title Handwritten Word Recognition Using Fuzzy Matching Degrees
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Handwritten%20Word%20Recognition%20Using%20Fuzzy%20Matching%20Degrees&rft.jtitle=Journal%20of%20Artificial%20Intelligence%20and%20Soft%20Computing%20Research&rft.au=Wr%C3%B3bel,%20Micha%C5%82&rft.date=2021-07-01&rft.volume=11&rft.issue=3&rft.spage=229&rft.epage=242&rft.pages=229-242&rft.issn=2449-6499&rft.eissn=2449-6499&rft_id=info:doi/10.2478/jaiscr-2021-0014&rft_dat=%3Cproquest_cross%3E2583814940%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-b32e077274aa92060d43bdd20336da7dae523b3bc5dc2b05f725d305189816533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583814940&rft_id=info:pmid/&rfr_iscdi=true