Loading…

Development of Methodology for Characterization of Surface Roughness of Solid Metallic Surfaces Using Oil Slippage Method

The study employed the phenomenon of friction between liquid droplets and solid metallic surfaces in surface roughness analysis of engineering materials. Five samples of mild steel plate were prepared to different degrees of surface roughness by facing operation. The sample surfaces were analysed to...

Full description

Saved in:
Bibliographic Details
Published in:Latvian Journal of Physics and Technical Sciences 2021-08, Vol.58 (4), p.43-54
Main Authors: Ohijeagbon, I. O., Adeleke, A. A., Ikubanni, P. P., Orhadahwe, T. A., Adebayo, G. E., Adekunle, A. S., Omotosho, A. O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c314t-96e498f7638d00a6306d0acb8be6b279ca158737ce30ddbda080a55db1f07fce3
container_end_page 54
container_issue 4
container_start_page 43
container_title Latvian Journal of Physics and Technical Sciences
container_volume 58
creator Ohijeagbon, I. O.
Adeleke, A. A.
Ikubanni, P. P.
Orhadahwe, T. A.
Adebayo, G. E.
Adekunle, A. S.
Omotosho, A. O.
description The study employed the phenomenon of friction between liquid droplets and solid metallic surfaces in surface roughness analysis of engineering materials. Five samples of mild steel plate were prepared to different degrees of surface roughness by facing operation. The sample surfaces were analysed to determine the roughness parameters (mean roughness, root mean square roughness, roughness skewness, and roughness kurtosis) and friction coefficient of the surfaces. Oil droplet sliding velocity was determined using the oil slippage test. The friction coefficient of the surfaces increased with increasing roughness parameter which varied from 26.334 µm at friction coefficient = 0.63 to 13.153 µm at friction coefficient = 0.46. The results from oil slippage test showed that the sliding velocity of the oil drop decreased as the friction coefficient of samples increased. At an inclination angle of 30°, sliding velocity varied from 0.51 cm/s at friction coefficient = 0.63 to 0.92 cm/s at friction coefficient = 0.46. Some of the samples exhibited a deviation in the trend of relationship between friction coefficient and sliding velocity which resulted from the variation in peak height of roughness between the sample surfaces. Oil slippage method predicts the surface behaviours of materials based on their surface parameters.
doi_str_mv 10.2478/lpts-2021-0032
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583951940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583951940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-96e498f7638d00a6306d0acb8be6b279ca158737ce30ddbda080a55db1f07fce3</originalsourceid><addsrcrecordid>eNptkM1LwzAYxoMoOOaungueO98mTZviSeYnTAbOnUPapF0ka2rSKvWvt3UTPXh6H16eD_ghdB7BHMcpuzRN60MMOAoBCD5CE4wpDRnLkuM_-hTNvNc5YEpwEgGboP5GvStjm52q28CWwZNqt1ZaY6s-KK0LFlvhRNEqpz9Fq209etadK0WhgmfbVdtaef_9tEbLMS6M0cWPxwcbr-sqWGkTrI1uGlGpw8YZOimF8Wp2uFO0ubt9WTyEy9X94-J6GRYkitswS1ScsTJNCJMAIiGQSBBFznKV5DjNChFRlpK0UASkzKUABoJSmUclpOXwnaKLfW_j7FunfMtfbefqYZJjykhGoyyGwTXfuwpnvXeq5I3TO-F6HgEfCfORMB8J85HwELjaBz6EGfBIVbmuH8Rv-_9ByuKYkC_r9ITc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583951940</pqid></control><display><type>article</type><title>Development of Methodology for Characterization of Surface Roughness of Solid Metallic Surfaces Using Oil Slippage Method</title><source>Publicly Available Content (ProQuest)</source><creator>Ohijeagbon, I. O. ; Adeleke, A. A. ; Ikubanni, P. P. ; Orhadahwe, T. A. ; Adebayo, G. E. ; Adekunle, A. S. ; Omotosho, A. O.</creator><creatorcontrib>Ohijeagbon, I. O. ; Adeleke, A. A. ; Ikubanni, P. P. ; Orhadahwe, T. A. ; Adebayo, G. E. ; Adekunle, A. S. ; Omotosho, A. O.</creatorcontrib><description>The study employed the phenomenon of friction between liquid droplets and solid metallic surfaces in surface roughness analysis of engineering materials. Five samples of mild steel plate were prepared to different degrees of surface roughness by facing operation. The sample surfaces were analysed to determine the roughness parameters (mean roughness, root mean square roughness, roughness skewness, and roughness kurtosis) and friction coefficient of the surfaces. Oil droplet sliding velocity was determined using the oil slippage test. The friction coefficient of the surfaces increased with increasing roughness parameter which varied from 26.334 µm at friction coefficient = 0.63 to 13.153 µm at friction coefficient = 0.46. The results from oil slippage test showed that the sliding velocity of the oil drop decreased as the friction coefficient of samples increased. At an inclination angle of 30°, sliding velocity varied from 0.51 cm/s at friction coefficient = 0.63 to 0.92 cm/s at friction coefficient = 0.46. Some of the samples exhibited a deviation in the trend of relationship between friction coefficient and sliding velocity which resulted from the variation in peak height of roughness between the sample surfaces. Oil slippage method predicts the surface behaviours of materials based on their surface parameters.</description><identifier>ISSN: 2255-8896</identifier><identifier>ISSN: 0868-8257</identifier><identifier>EISSN: 2255-8896</identifier><identifier>EISSN: 2199-6156</identifier><identifier>DOI: 10.2478/lpts-2021-0032</identifier><language>eng</language><publisher>Riga: Sciendo</publisher><subject>Coefficient of friction ; Coefficient of variation ; Droplets ; Dry friction ; Friction ; image analysis ; Inclination angle ; Kurtosis ; Low carbon steels ; oil slippage ; Parameters ; Sliding ; Slippage ; Steel plates ; surface profilometry ; Surface roughness ; surface roughness parameters ; Velocity</subject><ispartof>Latvian Journal of Physics and Technical Sciences, 2021-08, Vol.58 (4), p.43-54</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-96e498f7638d00a6306d0acb8be6b279ca158737ce30ddbda080a55db1f07fce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2583951940?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Ohijeagbon, I. O.</creatorcontrib><creatorcontrib>Adeleke, A. A.</creatorcontrib><creatorcontrib>Ikubanni, P. P.</creatorcontrib><creatorcontrib>Orhadahwe, T. A.</creatorcontrib><creatorcontrib>Adebayo, G. E.</creatorcontrib><creatorcontrib>Adekunle, A. S.</creatorcontrib><creatorcontrib>Omotosho, A. O.</creatorcontrib><title>Development of Methodology for Characterization of Surface Roughness of Solid Metallic Surfaces Using Oil Slippage Method</title><title>Latvian Journal of Physics and Technical Sciences</title><description>The study employed the phenomenon of friction between liquid droplets and solid metallic surfaces in surface roughness analysis of engineering materials. Five samples of mild steel plate were prepared to different degrees of surface roughness by facing operation. The sample surfaces were analysed to determine the roughness parameters (mean roughness, root mean square roughness, roughness skewness, and roughness kurtosis) and friction coefficient of the surfaces. Oil droplet sliding velocity was determined using the oil slippage test. The friction coefficient of the surfaces increased with increasing roughness parameter which varied from 26.334 µm at friction coefficient = 0.63 to 13.153 µm at friction coefficient = 0.46. The results from oil slippage test showed that the sliding velocity of the oil drop decreased as the friction coefficient of samples increased. At an inclination angle of 30°, sliding velocity varied from 0.51 cm/s at friction coefficient = 0.63 to 0.92 cm/s at friction coefficient = 0.46. Some of the samples exhibited a deviation in the trend of relationship between friction coefficient and sliding velocity which resulted from the variation in peak height of roughness between the sample surfaces. Oil slippage method predicts the surface behaviours of materials based on their surface parameters.</description><subject>Coefficient of friction</subject><subject>Coefficient of variation</subject><subject>Droplets</subject><subject>Dry friction</subject><subject>Friction</subject><subject>image analysis</subject><subject>Inclination angle</subject><subject>Kurtosis</subject><subject>Low carbon steels</subject><subject>oil slippage</subject><subject>Parameters</subject><subject>Sliding</subject><subject>Slippage</subject><subject>Steel plates</subject><subject>surface profilometry</subject><subject>Surface roughness</subject><subject>surface roughness parameters</subject><subject>Velocity</subject><issn>2255-8896</issn><issn>0868-8257</issn><issn>2255-8896</issn><issn>2199-6156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkM1LwzAYxoMoOOaungueO98mTZviSeYnTAbOnUPapF0ka2rSKvWvt3UTPXh6H16eD_ghdB7BHMcpuzRN60MMOAoBCD5CE4wpDRnLkuM_-hTNvNc5YEpwEgGboP5GvStjm52q28CWwZNqt1ZaY6s-KK0LFlvhRNEqpz9Fq209etadK0WhgmfbVdtaef_9tEbLMS6M0cWPxwcbr-sqWGkTrI1uGlGpw8YZOimF8Wp2uFO0ubt9WTyEy9X94-J6GRYkitswS1ScsTJNCJMAIiGQSBBFznKV5DjNChFRlpK0UASkzKUABoJSmUclpOXwnaKLfW_j7FunfMtfbefqYZJjykhGoyyGwTXfuwpnvXeq5I3TO-F6HgEfCfORMB8J85HwELjaBz6EGfBIVbmuH8Rv-_9ByuKYkC_r9ITc</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Ohijeagbon, I. O.</creator><creator>Adeleke, A. A.</creator><creator>Ikubanni, P. P.</creator><creator>Orhadahwe, T. A.</creator><creator>Adebayo, G. E.</creator><creator>Adekunle, A. S.</creator><creator>Omotosho, A. O.</creator><general>Sciendo</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210801</creationdate><title>Development of Methodology for Characterization of Surface Roughness of Solid Metallic Surfaces Using Oil Slippage Method</title><author>Ohijeagbon, I. O. ; Adeleke, A. A. ; Ikubanni, P. P. ; Orhadahwe, T. A. ; Adebayo, G. E. ; Adekunle, A. S. ; Omotosho, A. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-96e498f7638d00a6306d0acb8be6b279ca158737ce30ddbda080a55db1f07fce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coefficient of friction</topic><topic>Coefficient of variation</topic><topic>Droplets</topic><topic>Dry friction</topic><topic>Friction</topic><topic>image analysis</topic><topic>Inclination angle</topic><topic>Kurtosis</topic><topic>Low carbon steels</topic><topic>oil slippage</topic><topic>Parameters</topic><topic>Sliding</topic><topic>Slippage</topic><topic>Steel plates</topic><topic>surface profilometry</topic><topic>Surface roughness</topic><topic>surface roughness parameters</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohijeagbon, I. O.</creatorcontrib><creatorcontrib>Adeleke, A. A.</creatorcontrib><creatorcontrib>Ikubanni, P. P.</creatorcontrib><creatorcontrib>Orhadahwe, T. A.</creatorcontrib><creatorcontrib>Adebayo, G. E.</creatorcontrib><creatorcontrib>Adekunle, A. S.</creatorcontrib><creatorcontrib>Omotosho, A. O.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Latvian Journal of Physics and Technical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohijeagbon, I. O.</au><au>Adeleke, A. A.</au><au>Ikubanni, P. P.</au><au>Orhadahwe, T. A.</au><au>Adebayo, G. E.</au><au>Adekunle, A. S.</au><au>Omotosho, A. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Methodology for Characterization of Surface Roughness of Solid Metallic Surfaces Using Oil Slippage Method</atitle><jtitle>Latvian Journal of Physics and Technical Sciences</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>58</volume><issue>4</issue><spage>43</spage><epage>54</epage><pages>43-54</pages><issn>2255-8896</issn><issn>0868-8257</issn><eissn>2255-8896</eissn><eissn>2199-6156</eissn><abstract>The study employed the phenomenon of friction between liquid droplets and solid metallic surfaces in surface roughness analysis of engineering materials. Five samples of mild steel plate were prepared to different degrees of surface roughness by facing operation. The sample surfaces were analysed to determine the roughness parameters (mean roughness, root mean square roughness, roughness skewness, and roughness kurtosis) and friction coefficient of the surfaces. Oil droplet sliding velocity was determined using the oil slippage test. The friction coefficient of the surfaces increased with increasing roughness parameter which varied from 26.334 µm at friction coefficient = 0.63 to 13.153 µm at friction coefficient = 0.46. The results from oil slippage test showed that the sliding velocity of the oil drop decreased as the friction coefficient of samples increased. At an inclination angle of 30°, sliding velocity varied from 0.51 cm/s at friction coefficient = 0.63 to 0.92 cm/s at friction coefficient = 0.46. Some of the samples exhibited a deviation in the trend of relationship between friction coefficient and sliding velocity which resulted from the variation in peak height of roughness between the sample surfaces. Oil slippage method predicts the surface behaviours of materials based on their surface parameters.</abstract><cop>Riga</cop><pub>Sciendo</pub><doi>10.2478/lpts-2021-0032</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2255-8896
ispartof Latvian Journal of Physics and Technical Sciences, 2021-08, Vol.58 (4), p.43-54
issn 2255-8896
0868-8257
2255-8896
2199-6156
language eng
recordid cdi_proquest_journals_2583951940
source Publicly Available Content (ProQuest)
subjects Coefficient of friction
Coefficient of variation
Droplets
Dry friction
Friction
image analysis
Inclination angle
Kurtosis
Low carbon steels
oil slippage
Parameters
Sliding
Slippage
Steel plates
surface profilometry
Surface roughness
surface roughness parameters
Velocity
title Development of Methodology for Characterization of Surface Roughness of Solid Metallic Surfaces Using Oil Slippage Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A35%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Methodology%20for%20Characterization%20of%20Surface%20Roughness%20of%20Solid%20Metallic%20Surfaces%20Using%20Oil%20Slippage%20Method&rft.jtitle=Latvian%20Journal%20of%20Physics%20and%20Technical%20Sciences&rft.au=Ohijeagbon,%20I.%20O.&rft.date=2021-08-01&rft.volume=58&rft.issue=4&rft.spage=43&rft.epage=54&rft.pages=43-54&rft.issn=2255-8896&rft.eissn=2255-8896&rft_id=info:doi/10.2478/lpts-2021-0032&rft_dat=%3Cproquest_cross%3E2583951940%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-96e498f7638d00a6306d0acb8be6b279ca158737ce30ddbda080a55db1f07fce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583951940&rft_id=info:pmid/&rfr_iscdi=true