Loading…

Modeling layout design for multiple-view visualization via Bayesian inference

Layout design for multiple-view visualization (MV) concerns primarily how to arrange views in layouts that are geometrically and topologically plausible. Guidelines for MV layout design suggest considerations on various design factors, including view (e.g., bar and line charts), viewport (e.g., mobi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of visualization 2021-12, Vol.24 (6), p.1237-1252
Main Authors: Shao, Lingdan, Chu, Zhe, Chen, Xi, Lin, Yanna, Zeng, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-6155869bacedb0bf61f61a1af28a4361d93e69c7c860157b9994f91d0c4ab3cb3
cites cdi_FETCH-LOGICAL-c319t-6155869bacedb0bf61f61a1af28a4361d93e69c7c860157b9994f91d0c4ab3cb3
container_end_page 1252
container_issue 6
container_start_page 1237
container_title Journal of visualization
container_volume 24
creator Shao, Lingdan
Chu, Zhe
Chen, Xi
Lin, Yanna
Zeng, Wei
description Layout design for multiple-view visualization (MV) concerns primarily how to arrange views in layouts that are geometrically and topologically plausible. Guidelines for MV layout design suggest considerations on various design factors, including view (e.g., bar and line charts), viewport (e.g., mobile vs. desktop), and coordination (e.g., exploration vs. comparison), along with expertise and preference of the designer . Recent studies have revealed the diverse space of MV layout design via statistical analysis on empirical MVs, yet neglect the effects of those design factors. To address the gap, this work proposes to model the effects of design factors on MV layouts via Bayesian probabilistic inference. Specifically, we access three important properties of MV layout, i.e., maximum area ratio and weighted average aspect ratio as geometric metrics, and layout topology as a topological metric. We update the posterior probability of layout metrics given design factors by penetrating MVs from recent visualization publications. The analyses reveal many insightful MV layout design patterns, such as views in coordination type of comparison exhibit more balanced area ratio, while those for exploration are more scattered. This work makes a prominent starting point for a thorough understanding of MV layout design patterns. On the basis, we discuss how practitioners can use Bayesian inference approach for future research on finer-annotated visualization datasets and more comprehensive design factors and properties. Graphic Abstract
doi_str_mv 10.1007/s12650-021-00781-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583988404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583988404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6155869bacedb0bf61f61a1af28a4361d93e69c7c860157b9994f91d0c4ab3cb3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19HcJk2TpQ6-wMGNrkOapkOGTjom7cjMrzdawZ1w4T74zrlwELoEeg2UVjcJClFSQgsgeZVADkdoBrIqiVRVeZxnxhmR-XCKzlJa00zyCmZouewb1_mwwp3Z9-OAG5f8KuC2j3gzdoPfdo7svPvEO59G0_mDGXwf8mbwndln2ATsQ-uiC9ado5PWdMld_PY5en-4f1s8kZfXx-fF7QuxDNRABJSlFKo21jU1rVsBuQyYtpCGMwGNYk4oW1kpKJRVrZTirYKGWm5qZms2R1eT7zb2H6NLg173Ywz5pS5KyZSUnPJMFRNlY59SdK3eRr8xca-B6u_Y9BSbzmHon9j0IYvYJEoZDisX_6z_UX0B6m5xiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583988404</pqid></control><display><type>article</type><title>Modeling layout design for multiple-view visualization via Bayesian inference</title><source>Springer Link</source><creator>Shao, Lingdan ; Chu, Zhe ; Chen, Xi ; Lin, Yanna ; Zeng, Wei</creator><creatorcontrib>Shao, Lingdan ; Chu, Zhe ; Chen, Xi ; Lin, Yanna ; Zeng, Wei</creatorcontrib><description>Layout design for multiple-view visualization (MV) concerns primarily how to arrange views in layouts that are geometrically and topologically plausible. Guidelines for MV layout design suggest considerations on various design factors, including view (e.g., bar and line charts), viewport (e.g., mobile vs. desktop), and coordination (e.g., exploration vs. comparison), along with expertise and preference of the designer . Recent studies have revealed the diverse space of MV layout design via statistical analysis on empirical MVs, yet neglect the effects of those design factors. To address the gap, this work proposes to model the effects of design factors on MV layouts via Bayesian probabilistic inference. Specifically, we access three important properties of MV layout, i.e., maximum area ratio and weighted average aspect ratio as geometric metrics, and layout topology as a topological metric. We update the posterior probability of layout metrics given design factors by penetrating MVs from recent visualization publications. The analyses reveal many insightful MV layout design patterns, such as views in coordination type of comparison exhibit more balanced area ratio, while those for exploration are more scattered. This work makes a prominent starting point for a thorough understanding of MV layout design patterns. On the basis, we discuss how practitioners can use Bayesian inference approach for future research on finer-annotated visualization datasets and more comprehensive design factors and properties. Graphic Abstract</description><identifier>ISSN: 1343-8875</identifier><identifier>EISSN: 1875-8975</identifier><identifier>DOI: 10.1007/s12650-021-00781-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aspect ratio ; Bayesian analysis ; Classical and Continuum Physics ; Computer Imaging ; Conditional probability ; Coordination ; Design ; Design factors ; Empirical analysis ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Layouts ; Pattern Recognition and Graphics ; Probabilistic inference ; Regular Paper ; Statistical analysis ; Statistical inference ; Topology ; Vision ; Visualization</subject><ispartof>Journal of visualization, 2021-12, Vol.24 (6), p.1237-1252</ispartof><rights>The Visualization Society of Japan 2021</rights><rights>The Visualization Society of Japan 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6155869bacedb0bf61f61a1af28a4361d93e69c7c860157b9994f91d0c4ab3cb3</citedby><cites>FETCH-LOGICAL-c319t-6155869bacedb0bf61f61a1af28a4361d93e69c7c860157b9994f91d0c4ab3cb3</cites><orcidid>0000-0002-5600-8824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shao, Lingdan</creatorcontrib><creatorcontrib>Chu, Zhe</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Lin, Yanna</creatorcontrib><creatorcontrib>Zeng, Wei</creatorcontrib><title>Modeling layout design for multiple-view visualization via Bayesian inference</title><title>Journal of visualization</title><addtitle>J Vis</addtitle><description>Layout design for multiple-view visualization (MV) concerns primarily how to arrange views in layouts that are geometrically and topologically plausible. Guidelines for MV layout design suggest considerations on various design factors, including view (e.g., bar and line charts), viewport (e.g., mobile vs. desktop), and coordination (e.g., exploration vs. comparison), along with expertise and preference of the designer . Recent studies have revealed the diverse space of MV layout design via statistical analysis on empirical MVs, yet neglect the effects of those design factors. To address the gap, this work proposes to model the effects of design factors on MV layouts via Bayesian probabilistic inference. Specifically, we access three important properties of MV layout, i.e., maximum area ratio and weighted average aspect ratio as geometric metrics, and layout topology as a topological metric. We update the posterior probability of layout metrics given design factors by penetrating MVs from recent visualization publications. The analyses reveal many insightful MV layout design patterns, such as views in coordination type of comparison exhibit more balanced area ratio, while those for exploration are more scattered. This work makes a prominent starting point for a thorough understanding of MV layout design patterns. On the basis, we discuss how practitioners can use Bayesian inference approach for future research on finer-annotated visualization datasets and more comprehensive design factors and properties. Graphic Abstract</description><subject>Aspect ratio</subject><subject>Bayesian analysis</subject><subject>Classical and Continuum Physics</subject><subject>Computer Imaging</subject><subject>Conditional probability</subject><subject>Coordination</subject><subject>Design</subject><subject>Design factors</subject><subject>Empirical analysis</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Layouts</subject><subject>Pattern Recognition and Graphics</subject><subject>Probabilistic inference</subject><subject>Regular Paper</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Topology</subject><subject>Vision</subject><subject>Visualization</subject><issn>1343-8875</issn><issn>1875-8975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19HcJk2TpQ6-wMGNrkOapkOGTjom7cjMrzdawZ1w4T74zrlwELoEeg2UVjcJClFSQgsgeZVADkdoBrIqiVRVeZxnxhmR-XCKzlJa00zyCmZouewb1_mwwp3Z9-OAG5f8KuC2j3gzdoPfdo7svPvEO59G0_mDGXwf8mbwndln2ATsQ-uiC9ado5PWdMld_PY5en-4f1s8kZfXx-fF7QuxDNRABJSlFKo21jU1rVsBuQyYtpCGMwGNYk4oW1kpKJRVrZTirYKGWm5qZms2R1eT7zb2H6NLg173Ywz5pS5KyZSUnPJMFRNlY59SdK3eRr8xca-B6u_Y9BSbzmHon9j0IYvYJEoZDisX_6z_UX0B6m5xiQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Shao, Lingdan</creator><creator>Chu, Zhe</creator><creator>Chen, Xi</creator><creator>Lin, Yanna</creator><creator>Zeng, Wei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5600-8824</orcidid></search><sort><creationdate>20211201</creationdate><title>Modeling layout design for multiple-view visualization via Bayesian inference</title><author>Shao, Lingdan ; Chu, Zhe ; Chen, Xi ; Lin, Yanna ; Zeng, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6155869bacedb0bf61f61a1af28a4361d93e69c7c860157b9994f91d0c4ab3cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aspect ratio</topic><topic>Bayesian analysis</topic><topic>Classical and Continuum Physics</topic><topic>Computer Imaging</topic><topic>Conditional probability</topic><topic>Coordination</topic><topic>Design</topic><topic>Design factors</topic><topic>Empirical analysis</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Layouts</topic><topic>Pattern Recognition and Graphics</topic><topic>Probabilistic inference</topic><topic>Regular Paper</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Topology</topic><topic>Vision</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Lingdan</creatorcontrib><creatorcontrib>Chu, Zhe</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Lin, Yanna</creatorcontrib><creatorcontrib>Zeng, Wei</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Lingdan</au><au>Chu, Zhe</au><au>Chen, Xi</au><au>Lin, Yanna</au><au>Zeng, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling layout design for multiple-view visualization via Bayesian inference</atitle><jtitle>Journal of visualization</jtitle><stitle>J Vis</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>24</volume><issue>6</issue><spage>1237</spage><epage>1252</epage><pages>1237-1252</pages><issn>1343-8875</issn><eissn>1875-8975</eissn><abstract>Layout design for multiple-view visualization (MV) concerns primarily how to arrange views in layouts that are geometrically and topologically plausible. Guidelines for MV layout design suggest considerations on various design factors, including view (e.g., bar and line charts), viewport (e.g., mobile vs. desktop), and coordination (e.g., exploration vs. comparison), along with expertise and preference of the designer . Recent studies have revealed the diverse space of MV layout design via statistical analysis on empirical MVs, yet neglect the effects of those design factors. To address the gap, this work proposes to model the effects of design factors on MV layouts via Bayesian probabilistic inference. Specifically, we access three important properties of MV layout, i.e., maximum area ratio and weighted average aspect ratio as geometric metrics, and layout topology as a topological metric. We update the posterior probability of layout metrics given design factors by penetrating MVs from recent visualization publications. The analyses reveal many insightful MV layout design patterns, such as views in coordination type of comparison exhibit more balanced area ratio, while those for exploration are more scattered. This work makes a prominent starting point for a thorough understanding of MV layout design patterns. On the basis, we discuss how practitioners can use Bayesian inference approach for future research on finer-annotated visualization datasets and more comprehensive design factors and properties. Graphic Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12650-021-00781-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5600-8824</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1343-8875
ispartof Journal of visualization, 2021-12, Vol.24 (6), p.1237-1252
issn 1343-8875
1875-8975
language eng
recordid cdi_proquest_journals_2583988404
source Springer Link
subjects Aspect ratio
Bayesian analysis
Classical and Continuum Physics
Computer Imaging
Conditional probability
Coordination
Design
Design factors
Empirical analysis
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Heat and Mass Transfer
Layouts
Pattern Recognition and Graphics
Probabilistic inference
Regular Paper
Statistical analysis
Statistical inference
Topology
Vision
Visualization
title Modeling layout design for multiple-view visualization via Bayesian inference
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A18%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20layout%20design%20for%20multiple-view%20visualization%20via%20Bayesian%20inference&rft.jtitle=Journal%20of%20visualization&rft.au=Shao,%20Lingdan&rft.date=2021-12-01&rft.volume=24&rft.issue=6&rft.spage=1237&rft.epage=1252&rft.pages=1237-1252&rft.issn=1343-8875&rft.eissn=1875-8975&rft_id=info:doi/10.1007/s12650-021-00781-z&rft_dat=%3Cproquest_cross%3E2583988404%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-6155869bacedb0bf61f61a1af28a4361d93e69c7c860157b9994f91d0c4ab3cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583988404&rft_id=info:pmid/&rfr_iscdi=true