Loading…
Modeling layout design for multiple-view visualization via Bayesian inference
Layout design for multiple-view visualization (MV) concerns primarily how to arrange views in layouts that are geometrically and topologically plausible. Guidelines for MV layout design suggest considerations on various design factors, including view (e.g., bar and line charts), viewport (e.g., mobi...
Saved in:
Published in: | Journal of visualization 2021-12, Vol.24 (6), p.1237-1252 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-6155869bacedb0bf61f61a1af28a4361d93e69c7c860157b9994f91d0c4ab3cb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-6155869bacedb0bf61f61a1af28a4361d93e69c7c860157b9994f91d0c4ab3cb3 |
container_end_page | 1252 |
container_issue | 6 |
container_start_page | 1237 |
container_title | Journal of visualization |
container_volume | 24 |
creator | Shao, Lingdan Chu, Zhe Chen, Xi Lin, Yanna Zeng, Wei |
description | Layout design for multiple-view visualization (MV) concerns primarily how to arrange views in layouts that are geometrically and topologically plausible. Guidelines for MV layout design suggest considerations on various design factors, including
view
(e.g., bar and line charts),
viewport
(e.g., mobile vs. desktop), and
coordination
(e.g., exploration vs. comparison), along with expertise and preference of the
designer
. Recent studies have revealed the diverse space of MV layout design via statistical analysis on empirical MVs, yet neglect the effects of those design factors. To address the gap, this work proposes to model the effects of design factors on MV layouts via Bayesian probabilistic inference. Specifically, we access three important properties of MV layout, i.e., maximum area ratio and weighted average aspect ratio as geometric metrics, and layout topology as a topological metric. We update the posterior probability of layout metrics given design factors by penetrating MVs from recent visualization publications. The analyses reveal many insightful MV layout design patterns, such as views in coordination type of comparison exhibit more balanced area ratio, while those for exploration are more scattered. This work makes a prominent starting point for a thorough understanding of MV layout design patterns. On the basis, we discuss how practitioners can use Bayesian inference approach for future research on finer-annotated visualization datasets and more comprehensive design factors and properties.
Graphic Abstract |
doi_str_mv | 10.1007/s12650-021-00781-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2583988404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583988404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6155869bacedb0bf61f61a1af28a4361d93e69c7c860157b9994f91d0c4ab3cb3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19HcJk2TpQ6-wMGNrkOapkOGTjom7cjMrzdawZ1w4T74zrlwELoEeg2UVjcJClFSQgsgeZVADkdoBrIqiVRVeZxnxhmR-XCKzlJa00zyCmZouewb1_mwwp3Z9-OAG5f8KuC2j3gzdoPfdo7svPvEO59G0_mDGXwf8mbwndln2ATsQ-uiC9ado5PWdMld_PY5en-4f1s8kZfXx-fF7QuxDNRABJSlFKo21jU1rVsBuQyYtpCGMwGNYk4oW1kpKJRVrZTirYKGWm5qZms2R1eT7zb2H6NLg173Ywz5pS5KyZSUnPJMFRNlY59SdK3eRr8xca-B6u_Y9BSbzmHon9j0IYvYJEoZDisX_6z_UX0B6m5xiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583988404</pqid></control><display><type>article</type><title>Modeling layout design for multiple-view visualization via Bayesian inference</title><source>Springer Link</source><creator>Shao, Lingdan ; Chu, Zhe ; Chen, Xi ; Lin, Yanna ; Zeng, Wei</creator><creatorcontrib>Shao, Lingdan ; Chu, Zhe ; Chen, Xi ; Lin, Yanna ; Zeng, Wei</creatorcontrib><description>Layout design for multiple-view visualization (MV) concerns primarily how to arrange views in layouts that are geometrically and topologically plausible. Guidelines for MV layout design suggest considerations on various design factors, including
view
(e.g., bar and line charts),
viewport
(e.g., mobile vs. desktop), and
coordination
(e.g., exploration vs. comparison), along with expertise and preference of the
designer
. Recent studies have revealed the diverse space of MV layout design via statistical analysis on empirical MVs, yet neglect the effects of those design factors. To address the gap, this work proposes to model the effects of design factors on MV layouts via Bayesian probabilistic inference. Specifically, we access three important properties of MV layout, i.e., maximum area ratio and weighted average aspect ratio as geometric metrics, and layout topology as a topological metric. We update the posterior probability of layout metrics given design factors by penetrating MVs from recent visualization publications. The analyses reveal many insightful MV layout design patterns, such as views in coordination type of comparison exhibit more balanced area ratio, while those for exploration are more scattered. This work makes a prominent starting point for a thorough understanding of MV layout design patterns. On the basis, we discuss how practitioners can use Bayesian inference approach for future research on finer-annotated visualization datasets and more comprehensive design factors and properties.
Graphic Abstract</description><identifier>ISSN: 1343-8875</identifier><identifier>EISSN: 1875-8975</identifier><identifier>DOI: 10.1007/s12650-021-00781-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aspect ratio ; Bayesian analysis ; Classical and Continuum Physics ; Computer Imaging ; Conditional probability ; Coordination ; Design ; Design factors ; Empirical analysis ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Heat and Mass Transfer ; Layouts ; Pattern Recognition and Graphics ; Probabilistic inference ; Regular Paper ; Statistical analysis ; Statistical inference ; Topology ; Vision ; Visualization</subject><ispartof>Journal of visualization, 2021-12, Vol.24 (6), p.1237-1252</ispartof><rights>The Visualization Society of Japan 2021</rights><rights>The Visualization Society of Japan 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6155869bacedb0bf61f61a1af28a4361d93e69c7c860157b9994f91d0c4ab3cb3</citedby><cites>FETCH-LOGICAL-c319t-6155869bacedb0bf61f61a1af28a4361d93e69c7c860157b9994f91d0c4ab3cb3</cites><orcidid>0000-0002-5600-8824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shao, Lingdan</creatorcontrib><creatorcontrib>Chu, Zhe</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Lin, Yanna</creatorcontrib><creatorcontrib>Zeng, Wei</creatorcontrib><title>Modeling layout design for multiple-view visualization via Bayesian inference</title><title>Journal of visualization</title><addtitle>J Vis</addtitle><description>Layout design for multiple-view visualization (MV) concerns primarily how to arrange views in layouts that are geometrically and topologically plausible. Guidelines for MV layout design suggest considerations on various design factors, including
view
(e.g., bar and line charts),
viewport
(e.g., mobile vs. desktop), and
coordination
(e.g., exploration vs. comparison), along with expertise and preference of the
designer
. Recent studies have revealed the diverse space of MV layout design via statistical analysis on empirical MVs, yet neglect the effects of those design factors. To address the gap, this work proposes to model the effects of design factors on MV layouts via Bayesian probabilistic inference. Specifically, we access three important properties of MV layout, i.e., maximum area ratio and weighted average aspect ratio as geometric metrics, and layout topology as a topological metric. We update the posterior probability of layout metrics given design factors by penetrating MVs from recent visualization publications. The analyses reveal many insightful MV layout design patterns, such as views in coordination type of comparison exhibit more balanced area ratio, while those for exploration are more scattered. This work makes a prominent starting point for a thorough understanding of MV layout design patterns. On the basis, we discuss how practitioners can use Bayesian inference approach for future research on finer-annotated visualization datasets and more comprehensive design factors and properties.
Graphic Abstract</description><subject>Aspect ratio</subject><subject>Bayesian analysis</subject><subject>Classical and Continuum Physics</subject><subject>Computer Imaging</subject><subject>Conditional probability</subject><subject>Coordination</subject><subject>Design</subject><subject>Design factors</subject><subject>Empirical analysis</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Layouts</subject><subject>Pattern Recognition and Graphics</subject><subject>Probabilistic inference</subject><subject>Regular Paper</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Topology</subject><subject>Vision</subject><subject>Visualization</subject><issn>1343-8875</issn><issn>1875-8975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19HcJk2TpQ6-wMGNrkOapkOGTjom7cjMrzdawZ1w4T74zrlwELoEeg2UVjcJClFSQgsgeZVADkdoBrIqiVRVeZxnxhmR-XCKzlJa00zyCmZouewb1_mwwp3Z9-OAG5f8KuC2j3gzdoPfdo7svPvEO59G0_mDGXwf8mbwndln2ATsQ-uiC9ado5PWdMld_PY5en-4f1s8kZfXx-fF7QuxDNRABJSlFKo21jU1rVsBuQyYtpCGMwGNYk4oW1kpKJRVrZTirYKGWm5qZms2R1eT7zb2H6NLg173Ywz5pS5KyZSUnPJMFRNlY59SdK3eRr8xca-B6u_Y9BSbzmHon9j0IYvYJEoZDisX_6z_UX0B6m5xiQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Shao, Lingdan</creator><creator>Chu, Zhe</creator><creator>Chen, Xi</creator><creator>Lin, Yanna</creator><creator>Zeng, Wei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5600-8824</orcidid></search><sort><creationdate>20211201</creationdate><title>Modeling layout design for multiple-view visualization via Bayesian inference</title><author>Shao, Lingdan ; Chu, Zhe ; Chen, Xi ; Lin, Yanna ; Zeng, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6155869bacedb0bf61f61a1af28a4361d93e69c7c860157b9994f91d0c4ab3cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aspect ratio</topic><topic>Bayesian analysis</topic><topic>Classical and Continuum Physics</topic><topic>Computer Imaging</topic><topic>Conditional probability</topic><topic>Coordination</topic><topic>Design</topic><topic>Design factors</topic><topic>Empirical analysis</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Layouts</topic><topic>Pattern Recognition and Graphics</topic><topic>Probabilistic inference</topic><topic>Regular Paper</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Topology</topic><topic>Vision</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Lingdan</creatorcontrib><creatorcontrib>Chu, Zhe</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Lin, Yanna</creatorcontrib><creatorcontrib>Zeng, Wei</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of visualization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Lingdan</au><au>Chu, Zhe</au><au>Chen, Xi</au><au>Lin, Yanna</au><au>Zeng, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling layout design for multiple-view visualization via Bayesian inference</atitle><jtitle>Journal of visualization</jtitle><stitle>J Vis</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>24</volume><issue>6</issue><spage>1237</spage><epage>1252</epage><pages>1237-1252</pages><issn>1343-8875</issn><eissn>1875-8975</eissn><abstract>Layout design for multiple-view visualization (MV) concerns primarily how to arrange views in layouts that are geometrically and topologically plausible. Guidelines for MV layout design suggest considerations on various design factors, including
view
(e.g., bar and line charts),
viewport
(e.g., mobile vs. desktop), and
coordination
(e.g., exploration vs. comparison), along with expertise and preference of the
designer
. Recent studies have revealed the diverse space of MV layout design via statistical analysis on empirical MVs, yet neglect the effects of those design factors. To address the gap, this work proposes to model the effects of design factors on MV layouts via Bayesian probabilistic inference. Specifically, we access three important properties of MV layout, i.e., maximum area ratio and weighted average aspect ratio as geometric metrics, and layout topology as a topological metric. We update the posterior probability of layout metrics given design factors by penetrating MVs from recent visualization publications. The analyses reveal many insightful MV layout design patterns, such as views in coordination type of comparison exhibit more balanced area ratio, while those for exploration are more scattered. This work makes a prominent starting point for a thorough understanding of MV layout design patterns. On the basis, we discuss how practitioners can use Bayesian inference approach for future research on finer-annotated visualization datasets and more comprehensive design factors and properties.
Graphic Abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12650-021-00781-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5600-8824</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1343-8875 |
ispartof | Journal of visualization, 2021-12, Vol.24 (6), p.1237-1252 |
issn | 1343-8875 1875-8975 |
language | eng |
recordid | cdi_proquest_journals_2583988404 |
source | Springer Link |
subjects | Aspect ratio Bayesian analysis Classical and Continuum Physics Computer Imaging Conditional probability Coordination Design Design factors Empirical analysis Engineering Engineering Fluid Dynamics Engineering Thermodynamics Heat and Mass Transfer Layouts Pattern Recognition and Graphics Probabilistic inference Regular Paper Statistical analysis Statistical inference Topology Vision Visualization |
title | Modeling layout design for multiple-view visualization via Bayesian inference |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A18%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20layout%20design%20for%20multiple-view%20visualization%20via%20Bayesian%20inference&rft.jtitle=Journal%20of%20visualization&rft.au=Shao,%20Lingdan&rft.date=2021-12-01&rft.volume=24&rft.issue=6&rft.spage=1237&rft.epage=1252&rft.pages=1237-1252&rft.issn=1343-8875&rft.eissn=1875-8975&rft_id=info:doi/10.1007/s12650-021-00781-z&rft_dat=%3Cproquest_cross%3E2583988404%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-6155869bacedb0bf61f61a1af28a4361d93e69c7c860157b9994f91d0c4ab3cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2583988404&rft_id=info:pmid/&rfr_iscdi=true |