Loading…
Thermal Conductivity of Multi-Sized Porous Thermal Barrier Coatings at Micro and Nano Scales after Long-Term Service at High Temperatures
Thermal barrier coatings with multi-sized porous structure at micro and nano scales were prepared with hollow spherical YSZ powders and polypropylene powders through atmospheric plasma spraying. The thermal conductivities of the multi-sized thermal barrier coatings after a long-term serving at high...
Saved in:
Published in: | Coatings (Basel) 2021-10, Vol.11 (10), p.1183 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thermal barrier coatings with multi-sized porous structure at micro and nano scales were prepared with hollow spherical YSZ powders and polypropylene powders through atmospheric plasma spraying. The thermal conductivities of the multi-sized thermal barrier coatings after a long-term serving at high temperature were tested through laser flash heating method. Meanwhile, the physical models of thermal barrier coatings with multi-sized porous structure at micro and nano scales were constructed through Ansys Workbench. The evolutions of thermal conductivity of thermal barrier coatings with multi-sized pores after long-term service at 1100 °C were investigated through computation. It was found that the thermal conductivity of the coating increased with the extension of the serving time. When the serving time reached 60 days, the thermal conductivity of the coating tended to be stable and close to the compacted bulk. The computational results were consistent with the tested ones, which could be helpful to explain the thermal conducting evolution in thermal barrier coatings with multi-sized porous structure at nano and micro scales after long-term serving at high temperature. |
---|---|
ISSN: | 2079-6412 2079-6412 |
DOI: | 10.3390/coatings11101183 |