Loading…

An Unsupervised‐Learning‐Based Approach to Compromised Items Detection

As technologies have been improved, item preknowledge has become a common concern in the test security area. The present study proposes an unsupervised‐learning‐based approach to detect compromised items. The unsupervised‐learning‐based compromised item detection approach contains three steps: (1) c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of educational measurement 2021-09, Vol.58 (3), p.413-433
Main Authors: Pan, Yiqin, Wollack, James A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3239-65cd4626db6837f55a04bfa6fc3fcd165f6e47f5f6f5f2fccf7163892c98029c3
cites cdi_FETCH-LOGICAL-c3239-65cd4626db6837f55a04bfa6fc3fcd165f6e47f5f6f5f2fccf7163892c98029c3
container_end_page 433
container_issue 3
container_start_page 413
container_title Journal of educational measurement
container_volume 58
creator Pan, Yiqin
Wollack, James A.
description As technologies have been improved, item preknowledge has become a common concern in the test security area. The present study proposes an unsupervised‐learning‐based approach to detect compromised items. The unsupervised‐learning‐based compromised item detection approach contains three steps: (1) classify responses of each examinee as either normal or aberrant based on both the item response and the response time; (2) use a recursive algorithm to cluster examinees into groups based on their response similarity; (3) identify the group with strongest preknowledge signal and report questionable items as compromised. Results show that under the conditions studied, provided the amount of preknowledge is not overwhelming and aberrance effect is at least moderate, the approach controls the false‐negative rate at a relatively low level and the false‐positive rate at an extremely low level.
doi_str_mv 10.1111/jedm.12299
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584414601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1315827</ericid><sourcerecordid>2584414601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3239-65cd4626db6837f55a04bfa6fc3fcd165f6e47f5f6f5f2fccf7163892c98029c3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsb98KAO2Fqbv5msqxt1ZaKG7sO00yiUzo_JjNKdz6Cz-iTmDri0kDIzbkf514OQueARxDO9cbk5QgIkfIADSBhPKYyZYdogDEhMRacH6MT7zcYA084DNBiXEWryneNcW-FN_nXx-fSZK4qqudQ3mRBisZN4-pMv0RtHU3qMnzKPRrNW1P6aGpao9uirk7Rkc223pz9vkO0up09Te7j5ePdfDJexpoSKmPBdc4EEflapDSxnGeYrW0mrKZW5yC4FYYF3YpwidXaJiBoKomWKSZS0yG67H3DIq-d8a3a1J2rwkhFeMoYMIEhUFc9pV3tvTNWNa4oM7dTgNU-K7XPSv1kFeCLHjau0H_gbAEUeEqS0Ie-_15sze4fJ7WYTR96z2_h93c2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584414601</pqid></control><display><type>article</type><title>An Unsupervised‐Learning‐Based Approach to Compromised Items Detection</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>ERIC</source><creator>Pan, Yiqin ; Wollack, James A.</creator><creatorcontrib>Pan, Yiqin ; Wollack, James A.</creatorcontrib><description>As technologies have been improved, item preknowledge has become a common concern in the test security area. The present study proposes an unsupervised‐learning‐based approach to detect compromised items. The unsupervised‐learning‐based compromised item detection approach contains three steps: (1) classify responses of each examinee as either normal or aberrant based on both the item response and the response time; (2) use a recursive algorithm to cluster examinees into groups based on their response similarity; (3) identify the group with strongest preknowledge signal and report questionable items as compromised. Results show that under the conditions studied, provided the amount of preknowledge is not overwhelming and aberrance effect is at least moderate, the approach controls the false‐negative rate at a relatively low level and the false‐positive rate at an extremely low level.</description><identifier>ISSN: 0022-0655</identifier><identifier>EISSN: 1745-3984</identifier><identifier>DOI: 10.1111/jedm.12299</identifier><language>eng</language><publisher>Madison: Wiley</publisher><subject>Artificial Intelligence ; Cheating ; Cognitive style ; Identification ; Reaction time ; Test Items</subject><ispartof>Journal of educational measurement, 2021-09, Vol.58 (3), p.413-433</ispartof><rights>2021 by the National Council on Measurement in Education</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3239-65cd4626db6837f55a04bfa6fc3fcd165f6e47f5f6f5f2fccf7163892c98029c3</citedby><cites>FETCH-LOGICAL-c3239-65cd4626db6837f55a04bfa6fc3fcd165f6e47f5f6f5f2fccf7163892c98029c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,30976</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1315827$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Yiqin</creatorcontrib><creatorcontrib>Wollack, James A.</creatorcontrib><title>An Unsupervised‐Learning‐Based Approach to Compromised Items Detection</title><title>Journal of educational measurement</title><description>As technologies have been improved, item preknowledge has become a common concern in the test security area. The present study proposes an unsupervised‐learning‐based approach to detect compromised items. The unsupervised‐learning‐based compromised item detection approach contains three steps: (1) classify responses of each examinee as either normal or aberrant based on both the item response and the response time; (2) use a recursive algorithm to cluster examinees into groups based on their response similarity; (3) identify the group with strongest preknowledge signal and report questionable items as compromised. Results show that under the conditions studied, provided the amount of preknowledge is not overwhelming and aberrance effect is at least moderate, the approach controls the false‐negative rate at a relatively low level and the false‐positive rate at an extremely low level.</description><subject>Artificial Intelligence</subject><subject>Cheating</subject><subject>Cognitive style</subject><subject>Identification</subject><subject>Reaction time</subject><subject>Test Items</subject><issn>0022-0655</issn><issn>1745-3984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><sourceid>7QJ</sourceid><recordid>eNp9kM1KAzEUhYMoWKsb98KAO2Fqbv5msqxt1ZaKG7sO00yiUzo_JjNKdz6Cz-iTmDri0kDIzbkf514OQueARxDO9cbk5QgIkfIADSBhPKYyZYdogDEhMRacH6MT7zcYA084DNBiXEWryneNcW-FN_nXx-fSZK4qqudQ3mRBisZN4-pMv0RtHU3qMnzKPRrNW1P6aGpao9uirk7Rkc223pz9vkO0up09Te7j5ePdfDJexpoSKmPBdc4EEflapDSxnGeYrW0mrKZW5yC4FYYF3YpwidXaJiBoKomWKSZS0yG67H3DIq-d8a3a1J2rwkhFeMoYMIEhUFc9pV3tvTNWNa4oM7dTgNU-K7XPSv1kFeCLHjau0H_gbAEUeEqS0Ie-_15sze4fJ7WYTR96z2_h93c2</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Pan, Yiqin</creator><creator>Wollack, James A.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope></search><sort><creationdate>20210901</creationdate><title>An Unsupervised‐Learning‐Based Approach to Compromised Items Detection</title><author>Pan, Yiqin ; Wollack, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3239-65cd4626db6837f55a04bfa6fc3fcd165f6e47f5f6f5f2fccf7163892c98029c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Cheating</topic><topic>Cognitive style</topic><topic>Identification</topic><topic>Reaction time</topic><topic>Test Items</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yiqin</creatorcontrib><creatorcontrib>Wollack, James A.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><jtitle>Journal of educational measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Yiqin</au><au>Wollack, James A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1315827</ericid><atitle>An Unsupervised‐Learning‐Based Approach to Compromised Items Detection</atitle><jtitle>Journal of educational measurement</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>58</volume><issue>3</issue><spage>413</spage><epage>433</epage><pages>413-433</pages><issn>0022-0655</issn><eissn>1745-3984</eissn><abstract>As technologies have been improved, item preknowledge has become a common concern in the test security area. The present study proposes an unsupervised‐learning‐based approach to detect compromised items. The unsupervised‐learning‐based compromised item detection approach contains three steps: (1) classify responses of each examinee as either normal or aberrant based on both the item response and the response time; (2) use a recursive algorithm to cluster examinees into groups based on their response similarity; (3) identify the group with strongest preknowledge signal and report questionable items as compromised. Results show that under the conditions studied, provided the amount of preknowledge is not overwhelming and aberrance effect is at least moderate, the approach controls the false‐negative rate at a relatively low level and the false‐positive rate at an extremely low level.</abstract><cop>Madison</cop><pub>Wiley</pub><doi>10.1111/jedm.12299</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0655
ispartof Journal of educational measurement, 2021-09, Vol.58 (3), p.413-433
issn 0022-0655
1745-3984
language eng
recordid cdi_proquest_journals_2584414601
source Applied Social Sciences Index & Abstracts (ASSIA); Wiley-Blackwell Read & Publish Collection; ERIC
subjects Artificial Intelligence
Cheating
Cognitive style
Identification
Reaction time
Test Items
title An Unsupervised‐Learning‐Based Approach to Compromised Items Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T03%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Unsupervised%E2%80%90Learning%E2%80%90Based%20Approach%20to%20Compromised%20Items%20Detection&rft.jtitle=Journal%20of%20educational%20measurement&rft.au=Pan,%20Yiqin&rft.date=2021-09-01&rft.volume=58&rft.issue=3&rft.spage=413&rft.epage=433&rft.pages=413-433&rft.issn=0022-0655&rft.eissn=1745-3984&rft_id=info:doi/10.1111/jedm.12299&rft_dat=%3Cproquest_cross%3E2584414601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3239-65cd4626db6837f55a04bfa6fc3fcd165f6e47f5f6f5f2fccf7163892c98029c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2584414601&rft_id=info:pmid/&rft_ericid=EJ1315827&rfr_iscdi=true