Loading…
An Unsupervised‐Learning‐Based Approach to Compromised Items Detection
As technologies have been improved, item preknowledge has become a common concern in the test security area. The present study proposes an unsupervised‐learning‐based approach to detect compromised items. The unsupervised‐learning‐based compromised item detection approach contains three steps: (1) c...
Saved in:
Published in: | Journal of educational measurement 2021-09, Vol.58 (3), p.413-433 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3239-65cd4626db6837f55a04bfa6fc3fcd165f6e47f5f6f5f2fccf7163892c98029c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3239-65cd4626db6837f55a04bfa6fc3fcd165f6e47f5f6f5f2fccf7163892c98029c3 |
container_end_page | 433 |
container_issue | 3 |
container_start_page | 413 |
container_title | Journal of educational measurement |
container_volume | 58 |
creator | Pan, Yiqin Wollack, James A. |
description | As technologies have been improved, item preknowledge has become a common concern in the test security area. The present study proposes an unsupervised‐learning‐based approach to detect compromised items. The unsupervised‐learning‐based compromised item detection approach contains three steps: (1) classify responses of each examinee as either normal or aberrant based on both the item response and the response time; (2) use a recursive algorithm to cluster examinees into groups based on their response similarity; (3) identify the group with strongest preknowledge signal and report questionable items as compromised. Results show that under the conditions studied, provided the amount of preknowledge is not overwhelming and aberrance effect is at least moderate, the approach controls the false‐negative rate at a relatively low level and the false‐positive rate at an extremely low level. |
doi_str_mv | 10.1111/jedm.12299 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584414601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1315827</ericid><sourcerecordid>2584414601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3239-65cd4626db6837f55a04bfa6fc3fcd165f6e47f5f6f5f2fccf7163892c98029c3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsb98KAO2Fqbv5msqxt1ZaKG7sO00yiUzo_JjNKdz6Cz-iTmDri0kDIzbkf514OQueARxDO9cbk5QgIkfIADSBhPKYyZYdogDEhMRacH6MT7zcYA084DNBiXEWryneNcW-FN_nXx-fSZK4qqudQ3mRBisZN4-pMv0RtHU3qMnzKPRrNW1P6aGpao9uirk7Rkc223pz9vkO0up09Te7j5ePdfDJexpoSKmPBdc4EEflapDSxnGeYrW0mrKZW5yC4FYYF3YpwidXaJiBoKomWKSZS0yG67H3DIq-d8a3a1J2rwkhFeMoYMIEhUFc9pV3tvTNWNa4oM7dTgNU-K7XPSv1kFeCLHjau0H_gbAEUeEqS0Ie-_15sze4fJ7WYTR96z2_h93c2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584414601</pqid></control><display><type>article</type><title>An Unsupervised‐Learning‐Based Approach to Compromised Items Detection</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>Wiley-Blackwell Read & Publish Collection</source><source>ERIC</source><creator>Pan, Yiqin ; Wollack, James A.</creator><creatorcontrib>Pan, Yiqin ; Wollack, James A.</creatorcontrib><description>As technologies have been improved, item preknowledge has become a common concern in the test security area. The present study proposes an unsupervised‐learning‐based approach to detect compromised items. The unsupervised‐learning‐based compromised item detection approach contains three steps: (1) classify responses of each examinee as either normal or aberrant based on both the item response and the response time; (2) use a recursive algorithm to cluster examinees into groups based on their response similarity; (3) identify the group with strongest preknowledge signal and report questionable items as compromised. Results show that under the conditions studied, provided the amount of preknowledge is not overwhelming and aberrance effect is at least moderate, the approach controls the false‐negative rate at a relatively low level and the false‐positive rate at an extremely low level.</description><identifier>ISSN: 0022-0655</identifier><identifier>EISSN: 1745-3984</identifier><identifier>DOI: 10.1111/jedm.12299</identifier><language>eng</language><publisher>Madison: Wiley</publisher><subject>Artificial Intelligence ; Cheating ; Cognitive style ; Identification ; Reaction time ; Test Items</subject><ispartof>Journal of educational measurement, 2021-09, Vol.58 (3), p.413-433</ispartof><rights>2021 by the National Council on Measurement in Education</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3239-65cd4626db6837f55a04bfa6fc3fcd165f6e47f5f6f5f2fccf7163892c98029c3</citedby><cites>FETCH-LOGICAL-c3239-65cd4626db6837f55a04bfa6fc3fcd165f6e47f5f6f5f2fccf7163892c98029c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,30976</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1315827$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Yiqin</creatorcontrib><creatorcontrib>Wollack, James A.</creatorcontrib><title>An Unsupervised‐Learning‐Based Approach to Compromised Items Detection</title><title>Journal of educational measurement</title><description>As technologies have been improved, item preknowledge has become a common concern in the test security area. The present study proposes an unsupervised‐learning‐based approach to detect compromised items. The unsupervised‐learning‐based compromised item detection approach contains three steps: (1) classify responses of each examinee as either normal or aberrant based on both the item response and the response time; (2) use a recursive algorithm to cluster examinees into groups based on their response similarity; (3) identify the group with strongest preknowledge signal and report questionable items as compromised. Results show that under the conditions studied, provided the amount of preknowledge is not overwhelming and aberrance effect is at least moderate, the approach controls the false‐negative rate at a relatively low level and the false‐positive rate at an extremely low level.</description><subject>Artificial Intelligence</subject><subject>Cheating</subject><subject>Cognitive style</subject><subject>Identification</subject><subject>Reaction time</subject><subject>Test Items</subject><issn>0022-0655</issn><issn>1745-3984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>7SW</sourceid><sourceid>7QJ</sourceid><recordid>eNp9kM1KAzEUhYMoWKsb98KAO2Fqbv5msqxt1ZaKG7sO00yiUzo_JjNKdz6Cz-iTmDri0kDIzbkf514OQueARxDO9cbk5QgIkfIADSBhPKYyZYdogDEhMRacH6MT7zcYA084DNBiXEWryneNcW-FN_nXx-fSZK4qqudQ3mRBisZN4-pMv0RtHU3qMnzKPRrNW1P6aGpao9uirk7Rkc223pz9vkO0up09Te7j5ePdfDJexpoSKmPBdc4EEflapDSxnGeYrW0mrKZW5yC4FYYF3YpwidXaJiBoKomWKSZS0yG67H3DIq-d8a3a1J2rwkhFeMoYMIEhUFc9pV3tvTNWNa4oM7dTgNU-K7XPSv1kFeCLHjau0H_gbAEUeEqS0Ie-_15sze4fJ7WYTR96z2_h93c2</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Pan, Yiqin</creator><creator>Wollack, James A.</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QJ</scope></search><sort><creationdate>20210901</creationdate><title>An Unsupervised‐Learning‐Based Approach to Compromised Items Detection</title><author>Pan, Yiqin ; Wollack, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3239-65cd4626db6837f55a04bfa6fc3fcd165f6e47f5f6f5f2fccf7163892c98029c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Cheating</topic><topic>Cognitive style</topic><topic>Identification</topic><topic>Reaction time</topic><topic>Test Items</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yiqin</creatorcontrib><creatorcontrib>Wollack, James A.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><jtitle>Journal of educational measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Yiqin</au><au>Wollack, James A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1315827</ericid><atitle>An Unsupervised‐Learning‐Based Approach to Compromised Items Detection</atitle><jtitle>Journal of educational measurement</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>58</volume><issue>3</issue><spage>413</spage><epage>433</epage><pages>413-433</pages><issn>0022-0655</issn><eissn>1745-3984</eissn><abstract>As technologies have been improved, item preknowledge has become a common concern in the test security area. The present study proposes an unsupervised‐learning‐based approach to detect compromised items. The unsupervised‐learning‐based compromised item detection approach contains three steps: (1) classify responses of each examinee as either normal or aberrant based on both the item response and the response time; (2) use a recursive algorithm to cluster examinees into groups based on their response similarity; (3) identify the group with strongest preknowledge signal and report questionable items as compromised. Results show that under the conditions studied, provided the amount of preknowledge is not overwhelming and aberrance effect is at least moderate, the approach controls the false‐negative rate at a relatively low level and the false‐positive rate at an extremely low level.</abstract><cop>Madison</cop><pub>Wiley</pub><doi>10.1111/jedm.12299</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0655 |
ispartof | Journal of educational measurement, 2021-09, Vol.58 (3), p.413-433 |
issn | 0022-0655 1745-3984 |
language | eng |
recordid | cdi_proquest_journals_2584414601 |
source | Applied Social Sciences Index & Abstracts (ASSIA); Wiley-Blackwell Read & Publish Collection; ERIC |
subjects | Artificial Intelligence Cheating Cognitive style Identification Reaction time Test Items |
title | An Unsupervised‐Learning‐Based Approach to Compromised Items Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T03%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Unsupervised%E2%80%90Learning%E2%80%90Based%20Approach%20to%20Compromised%20Items%20Detection&rft.jtitle=Journal%20of%20educational%20measurement&rft.au=Pan,%20Yiqin&rft.date=2021-09-01&rft.volume=58&rft.issue=3&rft.spage=413&rft.epage=433&rft.pages=413-433&rft.issn=0022-0655&rft.eissn=1745-3984&rft_id=info:doi/10.1111/jedm.12299&rft_dat=%3Cproquest_cross%3E2584414601%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3239-65cd4626db6837f55a04bfa6fc3fcd165f6e47f5f6f5f2fccf7163892c98029c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2584414601&rft_id=info:pmid/&rft_ericid=EJ1315827&rfr_iscdi=true |