Loading…

A high performance membraneless microfluidic microbial fuel cell for stable, long-term benchtop operation under strong flow

Strong control over experimental conditions in microfluidic channels provides a unique opportunity to study and optimize membraneless microbial fuel cells (MFCs), particularly with respect to the role of flow. However, improved performance and transferability of results to the wider MFC community re...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-10
Main Authors: Mehran Abbaszadeh Amirdehi, Khodaparastasgarabad, Nastaran, Hamza Landari, Mir Pouyan Zarabadi, Miled, Amine, Greener, Jesse
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mehran Abbaszadeh Amirdehi
Khodaparastasgarabad, Nastaran
Hamza Landari
Mir Pouyan Zarabadi
Miled, Amine
Greener, Jesse
description Strong control over experimental conditions in microfluidic channels provides a unique opportunity to study and optimize membraneless microbial fuel cells (MFCs), particularly with respect to the role of flow. However, improved performance and transferability of results to the wider MFC community require improvements to device stability under all applied operational conditions. To address these challenges, we present an easy-to-fabricate membraneless MFC that combines (i) O2 elimination via a gas diffusion barrier, (ii) integrated graphite electrodes, and (iii) optimized electrode placement to avoid of cross-contamination under all applied flow rates. Attention to all of these design features in the same platform resulted in operation of a MFC with a pure-culture anaerobic Geobacter sulfurreducens biofilm for half a year, six times longer than previously reported, without the use of an oxygen scavenger. As a result of higher device stability under high flow rates, power densities were four times higher than reported previously for microfluidic MFCs with the same biofilm.
doi_str_mv 10.48550/arxiv.2110.10751
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2584476531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584476531</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-6616f24f4a5ec960094a1b21bc626b322ad95b6bf728c92c97c40289b720b6f3</originalsourceid><addsrcrecordid>eNotjUtLAzEUhYMgWGp_gLuAW6cmN4-ZWZbiCwoudF-S9KadkklqMqOCf96RujoPPs4h5IazpWyUYvcmf3efS-BTwVmt-AWZgRC8aiTAFVmUcmSMga5BKTEjPyt66PYHesLsU-5NdEh77G02EQOWQvvO5eTD2O06dw62M4H6EQN1GCaXMi2DsQHvaEhxXw2Ye2oxusOQTjRNy2boUqRj3OEfmieI-pC-rsmlN6Hg4l_n5O3x4X39XG1en17Wq01lFPBKa649SC-NQtdqxlppuAVunQZtBYDZtcpq62toXAuurZ1k0LS2Bma1F3Nye1495fQxYhm2xzTmOB1uQTVS1loJLn4BML1gYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584476531</pqid></control><display><type>article</type><title>A high performance membraneless microfluidic microbial fuel cell for stable, long-term benchtop operation under strong flow</title><source>Publicly Available Content Database</source><creator>Mehran Abbaszadeh Amirdehi ; Khodaparastasgarabad, Nastaran ; Hamza Landari ; Mir Pouyan Zarabadi ; Miled, Amine ; Greener, Jesse</creator><creatorcontrib>Mehran Abbaszadeh Amirdehi ; Khodaparastasgarabad, Nastaran ; Hamza Landari ; Mir Pouyan Zarabadi ; Miled, Amine ; Greener, Jesse</creatorcontrib><description>Strong control over experimental conditions in microfluidic channels provides a unique opportunity to study and optimize membraneless microbial fuel cells (MFCs), particularly with respect to the role of flow. However, improved performance and transferability of results to the wider MFC community require improvements to device stability under all applied operational conditions. To address these challenges, we present an easy-to-fabricate membraneless MFC that combines (i) O2 elimination via a gas diffusion barrier, (ii) integrated graphite electrodes, and (iii) optimized electrode placement to avoid of cross-contamination under all applied flow rates. Attention to all of these design features in the same platform resulted in operation of a MFC with a pure-culture anaerobic Geobacter sulfurreducens biofilm for half a year, six times longer than previously reported, without the use of an oxygen scavenger. As a result of higher device stability under high flow rates, power densities were four times higher than reported previously for microfluidic MFCs with the same biofilm.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2110.10751</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Biochemical fuel cells ; Biofilms ; Diffusion barriers ; Flow stability ; Flow velocity ; Gaseous diffusion ; Microfluidics ; Microorganisms</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2584476531?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25735,27907,36994,44572</link.rule.ids></links><search><creatorcontrib>Mehran Abbaszadeh Amirdehi</creatorcontrib><creatorcontrib>Khodaparastasgarabad, Nastaran</creatorcontrib><creatorcontrib>Hamza Landari</creatorcontrib><creatorcontrib>Mir Pouyan Zarabadi</creatorcontrib><creatorcontrib>Miled, Amine</creatorcontrib><creatorcontrib>Greener, Jesse</creatorcontrib><title>A high performance membraneless microfluidic microbial fuel cell for stable, long-term benchtop operation under strong flow</title><title>arXiv.org</title><description>Strong control over experimental conditions in microfluidic channels provides a unique opportunity to study and optimize membraneless microbial fuel cells (MFCs), particularly with respect to the role of flow. However, improved performance and transferability of results to the wider MFC community require improvements to device stability under all applied operational conditions. To address these challenges, we present an easy-to-fabricate membraneless MFC that combines (i) O2 elimination via a gas diffusion barrier, (ii) integrated graphite electrodes, and (iii) optimized electrode placement to avoid of cross-contamination under all applied flow rates. Attention to all of these design features in the same platform resulted in operation of a MFC with a pure-culture anaerobic Geobacter sulfurreducens biofilm for half a year, six times longer than previously reported, without the use of an oxygen scavenger. As a result of higher device stability under high flow rates, power densities were four times higher than reported previously for microfluidic MFCs with the same biofilm.</description><subject>Biochemical fuel cells</subject><subject>Biofilms</subject><subject>Diffusion barriers</subject><subject>Flow stability</subject><subject>Flow velocity</subject><subject>Gaseous diffusion</subject><subject>Microfluidics</subject><subject>Microorganisms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjUtLAzEUhYMgWGp_gLuAW6cmN4-ZWZbiCwoudF-S9KadkklqMqOCf96RujoPPs4h5IazpWyUYvcmf3efS-BTwVmt-AWZgRC8aiTAFVmUcmSMga5BKTEjPyt66PYHesLsU-5NdEh77G02EQOWQvvO5eTD2O06dw62M4H6EQN1GCaXMi2DsQHvaEhxXw2Ye2oxusOQTjRNy2boUqRj3OEfmieI-pC-rsmlN6Hg4l_n5O3x4X39XG1en17Wq01lFPBKa649SC-NQtdqxlppuAVunQZtBYDZtcpq62toXAuurZ1k0LS2Bma1F3Nye1495fQxYhm2xzTmOB1uQTVS1loJLn4BML1gYg</recordid><startdate>20211020</startdate><enddate>20211020</enddate><creator>Mehran Abbaszadeh Amirdehi</creator><creator>Khodaparastasgarabad, Nastaran</creator><creator>Hamza Landari</creator><creator>Mir Pouyan Zarabadi</creator><creator>Miled, Amine</creator><creator>Greener, Jesse</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211020</creationdate><title>A high performance membraneless microfluidic microbial fuel cell for stable, long-term benchtop operation under strong flow</title><author>Mehran Abbaszadeh Amirdehi ; Khodaparastasgarabad, Nastaran ; Hamza Landari ; Mir Pouyan Zarabadi ; Miled, Amine ; Greener, Jesse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-6616f24f4a5ec960094a1b21bc626b322ad95b6bf728c92c97c40289b720b6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemical fuel cells</topic><topic>Biofilms</topic><topic>Diffusion barriers</topic><topic>Flow stability</topic><topic>Flow velocity</topic><topic>Gaseous diffusion</topic><topic>Microfluidics</topic><topic>Microorganisms</topic><toplevel>online_resources</toplevel><creatorcontrib>Mehran Abbaszadeh Amirdehi</creatorcontrib><creatorcontrib>Khodaparastasgarabad, Nastaran</creatorcontrib><creatorcontrib>Hamza Landari</creatorcontrib><creatorcontrib>Mir Pouyan Zarabadi</creatorcontrib><creatorcontrib>Miled, Amine</creatorcontrib><creatorcontrib>Greener, Jesse</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehran Abbaszadeh Amirdehi</au><au>Khodaparastasgarabad, Nastaran</au><au>Hamza Landari</au><au>Mir Pouyan Zarabadi</au><au>Miled, Amine</au><au>Greener, Jesse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high performance membraneless microfluidic microbial fuel cell for stable, long-term benchtop operation under strong flow</atitle><jtitle>arXiv.org</jtitle><date>2021-10-20</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Strong control over experimental conditions in microfluidic channels provides a unique opportunity to study and optimize membraneless microbial fuel cells (MFCs), particularly with respect to the role of flow. However, improved performance and transferability of results to the wider MFC community require improvements to device stability under all applied operational conditions. To address these challenges, we present an easy-to-fabricate membraneless MFC that combines (i) O2 elimination via a gas diffusion barrier, (ii) integrated graphite electrodes, and (iii) optimized electrode placement to avoid of cross-contamination under all applied flow rates. Attention to all of these design features in the same platform resulted in operation of a MFC with a pure-culture anaerobic Geobacter sulfurreducens biofilm for half a year, six times longer than previously reported, without the use of an oxygen scavenger. As a result of higher device stability under high flow rates, power densities were four times higher than reported previously for microfluidic MFCs with the same biofilm.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2110.10751</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2584476531
source Publicly Available Content Database
subjects Biochemical fuel cells
Biofilms
Diffusion barriers
Flow stability
Flow velocity
Gaseous diffusion
Microfluidics
Microorganisms
title A high performance membraneless microfluidic microbial fuel cell for stable, long-term benchtop operation under strong flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high%20performance%20membraneless%20microfluidic%20microbial%20fuel%20cell%20for%20stable,%20long-term%20benchtop%20operation%20under%20strong%20flow&rft.jtitle=arXiv.org&rft.au=Mehran%20Abbaszadeh%20Amirdehi&rft.date=2021-10-20&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2110.10751&rft_dat=%3Cproquest%3E2584476531%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-6616f24f4a5ec960094a1b21bc626b322ad95b6bf728c92c97c40289b720b6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2584476531&rft_id=info:pmid/&rfr_iscdi=true