Loading…

An Effective New Treatment of Fluoride-Containing Sludge Resulting from the Manufacture of Photovoltaic Cells

The circular economy and maximization of environmental sustainability are increasingly becoming the vision and mission of companies competing in present-day global markets. In particular, in the energy sector, the transition from fossil fuels to renewable sources of energy has become the widespread...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2021-10, Vol.9 (10), p.1745
Main Authors: Zueva, Svetlana, Ferella, Francesco, Corradini, Valentina, Baturina, Elena V., Ippolito, Nicolò M., Vegliò, Francesco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The circular economy and maximization of environmental sustainability are increasingly becoming the vision and mission of companies competing in present-day global markets. In particular, in the energy sector, the transition from fossil fuels to renewable sources of energy has become the widespread mantra. One typical example is the deployment of devices which produce clean energy, such as solar photovoltaic panels and solar thermal panels, wind generators, tidal stream generators, wave power generators, etc. These are undoubtedly generating clean energy, but their manufacture creates hazardous by-products, the disposal of which results in increased environmental pollution. Chemical Vapor Deposition (CVD) is widely used in manufacturing of solar photovoltaic cells. In these processes, typically, crystalline silicon is precipitated from chlorosilanes, iodides, bromides and fluorides. Polluting by-products include deposition of a silicon film, formation of SiO2 powder and formation of toxic vapors of HF, SiH4 and PH3. Usually, these gaseous products are eliminated in a central scrubber, whose unwanted by-product consists in large quantities of hazardous fluorine-containing sludge. This article concerns an effective and inexpensive detoxification of fluorinated sludge, developed by the authors during research into the sludge collected from the scrubber of a PV cell manufacturing plant located in southern Italy.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr9101745