Loading…

On the cut number problem for the 4, and 5-cubes

The hypercube cut number S(d) is the minimum number of hyperplanes in the d-dimensional Euclidean space that slice all the edges of the d-cube. The determination of S(d) in dimensions 5, 6, and 7, is one of the Victor Klee’s unresolved problems presented in one of his invited talks on problems from...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Applied Mathematics 2021-11, Vol.303, p.66-75
Main Authors: Emamy-K, M.R., Arce-Nazario, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c277t-2e947b1c07623123d55bce4431b1691a4108a8c9241978bdcd9d340adb908a043
container_end_page 75
container_issue
container_start_page 66
container_title Discrete Applied Mathematics
container_volume 303
creator Emamy-K, M.R.
Arce-Nazario, R.
description The hypercube cut number S(d) is the minimum number of hyperplanes in the d-dimensional Euclidean space that slice all the edges of the d-cube. The determination of S(d) in dimensions 5, 6, and 7, is one of the Victor Klee’s unresolved problems presented in one of his invited talks on problems from discrete geometry. The value of S(d) is unknown for d≥7, but for d≤3 it is trivial to show S(d)=d. In the late nineteen eighties, Emamy-K has shown S(4)=4 via two different proofs. More than a decade later, Sohler and Ziegler obtained a computational proof of S(5)=5 that took about two months of CPU computing time. From S(5)=5 it can be verified that S(6)=5. A short mathematical proof for d=5 remains to be a challenging problem that also leads one to the insight of the still open 7-dimensional problem. In this article we present a vertex coloring approach on the hypercube that gives a simplified proof for d=4 and also helps toward a short mathematical proof for d=5, free of computer computations.
doi_str_mv 10.1016/j.dam.2020.07.008
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584777553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X20303541</els_id><sourcerecordid>2584777553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-2e947b1c07623123d55bce4431b1691a4108a8c9241978bdcd9d340adb908a043</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG8Br7bOpGmT4knEf7CwFwVvoUlmsWXbrkkr-O3Nup49DcN7b-bxY-wSIUfA6qbLfdPnAgTkoHIAfcQWqJXIKqXwmC2Sp8oE6vdTdhZjBwCYtgWD9cCnD-Junvgw95YC34XRbqnnmzH8SvKaN4PnZeZmS_GcnWyabaSLv7lkb48Pr_fP2Wr99HJ_t8qcUGrKBNVSWXSgKlGgKHxZWkdSFmixqrGRCLrRrhYSa6Wtd772hYTG2zoJIIsluzrcTXU-Z4qT6cY5DOmlEaWWSqmyLJILDy4XxhgDbcwutH0Tvg2C2YMxnUlgzB6MAWUSmJS5PWQo1f9qKZjoWhoc-TaQm4wf23_SPzwyZ2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584777553</pqid></control><display><type>article</type><title>On the cut number problem for the 4, and 5-cubes</title><source>ScienceDirect Journals</source><creator>Emamy-K, M.R. ; Arce-Nazario, R.</creator><creatorcontrib>Emamy-K, M.R. ; Arce-Nazario, R.</creatorcontrib><description>The hypercube cut number S(d) is the minimum number of hyperplanes in the d-dimensional Euclidean space that slice all the edges of the d-cube. The determination of S(d) in dimensions 5, 6, and 7, is one of the Victor Klee’s unresolved problems presented in one of his invited talks on problems from discrete geometry. The value of S(d) is unknown for d≥7, but for d≤3 it is trivial to show S(d)=d. In the late nineteen eighties, Emamy-K has shown S(4)=4 via two different proofs. More than a decade later, Sohler and Ziegler obtained a computational proof of S(5)=5 that took about two months of CPU computing time. From S(5)=5 it can be verified that S(6)=5. A short mathematical proof for d=5 remains to be a challenging problem that also leads one to the insight of the still open 7-dimensional problem. In this article we present a vertex coloring approach on the hypercube that gives a simplified proof for d=4 and also helps toward a short mathematical proof for d=5, free of computer computations.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2020.07.008</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computing time ; Convex and discrete geometry ; Cubes ; Euclidean geometry ; Euclidean space ; Hypercube cuts ; Hypercubes ; Hyperplanes ; Mathematical analysis</subject><ispartof>Discrete Applied Mathematics, 2021-11, Vol.303, p.66-75</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-2e947b1c07623123d55bce4431b1691a4108a8c9241978bdcd9d340adb908a043</cites><orcidid>0000-0001-8036-6536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Emamy-K, M.R.</creatorcontrib><creatorcontrib>Arce-Nazario, R.</creatorcontrib><title>On the cut number problem for the 4, and 5-cubes</title><title>Discrete Applied Mathematics</title><description>The hypercube cut number S(d) is the minimum number of hyperplanes in the d-dimensional Euclidean space that slice all the edges of the d-cube. The determination of S(d) in dimensions 5, 6, and 7, is one of the Victor Klee’s unresolved problems presented in one of his invited talks on problems from discrete geometry. The value of S(d) is unknown for d≥7, but for d≤3 it is trivial to show S(d)=d. In the late nineteen eighties, Emamy-K has shown S(4)=4 via two different proofs. More than a decade later, Sohler and Ziegler obtained a computational proof of S(5)=5 that took about two months of CPU computing time. From S(5)=5 it can be verified that S(6)=5. A short mathematical proof for d=5 remains to be a challenging problem that also leads one to the insight of the still open 7-dimensional problem. In this article we present a vertex coloring approach on the hypercube that gives a simplified proof for d=4 and also helps toward a short mathematical proof for d=5, free of computer computations.</description><subject>Computing time</subject><subject>Convex and discrete geometry</subject><subject>Cubes</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Hypercube cuts</subject><subject>Hypercubes</subject><subject>Hyperplanes</subject><subject>Mathematical analysis</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG8Br7bOpGmT4knEf7CwFwVvoUlmsWXbrkkr-O3Nup49DcN7b-bxY-wSIUfA6qbLfdPnAgTkoHIAfcQWqJXIKqXwmC2Sp8oE6vdTdhZjBwCYtgWD9cCnD-Junvgw95YC34XRbqnnmzH8SvKaN4PnZeZmS_GcnWyabaSLv7lkb48Pr_fP2Wr99HJ_t8qcUGrKBNVSWXSgKlGgKHxZWkdSFmixqrGRCLrRrhYSa6Wtd772hYTG2zoJIIsluzrcTXU-Z4qT6cY5DOmlEaWWSqmyLJILDy4XxhgDbcwutH0Tvg2C2YMxnUlgzB6MAWUSmJS5PWQo1f9qKZjoWhoc-TaQm4wf23_SPzwyZ2U</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Emamy-K, M.R.</creator><creator>Arce-Nazario, R.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8036-6536</orcidid></search><sort><creationdate>20211115</creationdate><title>On the cut number problem for the 4, and 5-cubes</title><author>Emamy-K, M.R. ; Arce-Nazario, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-2e947b1c07623123d55bce4431b1691a4108a8c9241978bdcd9d340adb908a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computing time</topic><topic>Convex and discrete geometry</topic><topic>Cubes</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Hypercube cuts</topic><topic>Hypercubes</topic><topic>Hyperplanes</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emamy-K, M.R.</creatorcontrib><creatorcontrib>Arce-Nazario, R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emamy-K, M.R.</au><au>Arce-Nazario, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the cut number problem for the 4, and 5-cubes</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>303</volume><spage>66</spage><epage>75</epage><pages>66-75</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>The hypercube cut number S(d) is the minimum number of hyperplanes in the d-dimensional Euclidean space that slice all the edges of the d-cube. The determination of S(d) in dimensions 5, 6, and 7, is one of the Victor Klee’s unresolved problems presented in one of his invited talks on problems from discrete geometry. The value of S(d) is unknown for d≥7, but for d≤3 it is trivial to show S(d)=d. In the late nineteen eighties, Emamy-K has shown S(4)=4 via two different proofs. More than a decade later, Sohler and Ziegler obtained a computational proof of S(5)=5 that took about two months of CPU computing time. From S(5)=5 it can be verified that S(6)=5. A short mathematical proof for d=5 remains to be a challenging problem that also leads one to the insight of the still open 7-dimensional problem. In this article we present a vertex coloring approach on the hypercube that gives a simplified proof for d=4 and also helps toward a short mathematical proof for d=5, free of computer computations.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2020.07.008</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8036-6536</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2021-11, Vol.303, p.66-75
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_2584777553
source ScienceDirect Journals
subjects Computing time
Convex and discrete geometry
Cubes
Euclidean geometry
Euclidean space
Hypercube cuts
Hypercubes
Hyperplanes
Mathematical analysis
title On the cut number problem for the 4, and 5-cubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20cut%20number%20problem%20for%20the%204,%20and%205-cubes&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Emamy-K,%20M.R.&rft.date=2021-11-15&rft.volume=303&rft.spage=66&rft.epage=75&rft.pages=66-75&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2020.07.008&rft_dat=%3Cproquest_cross%3E2584777553%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-2e947b1c07623123d55bce4431b1691a4108a8c9241978bdcd9d340adb908a043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2584777553&rft_id=info:pmid/&rfr_iscdi=true