Loading…
On the cut number problem for the 4, and 5-cubes
The hypercube cut number S(d) is the minimum number of hyperplanes in the d-dimensional Euclidean space that slice all the edges of the d-cube. The determination of S(d) in dimensions 5, 6, and 7, is one of the Victor Klee’s unresolved problems presented in one of his invited talks on problems from...
Saved in:
Published in: | Discrete Applied Mathematics 2021-11, Vol.303, p.66-75 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c277t-2e947b1c07623123d55bce4431b1691a4108a8c9241978bdcd9d340adb908a043 |
container_end_page | 75 |
container_issue | |
container_start_page | 66 |
container_title | Discrete Applied Mathematics |
container_volume | 303 |
creator | Emamy-K, M.R. Arce-Nazario, R. |
description | The hypercube cut number S(d) is the minimum number of hyperplanes in the d-dimensional Euclidean space that slice all the edges of the d-cube. The determination of S(d) in dimensions 5, 6, and 7, is one of the Victor Klee’s unresolved problems presented in one of his invited talks on problems from discrete geometry. The value of S(d) is unknown for d≥7, but for d≤3 it is trivial to show S(d)=d. In the late nineteen eighties, Emamy-K has shown S(4)=4 via two different proofs. More than a decade later, Sohler and Ziegler obtained a computational proof of S(5)=5 that took about two months of CPU computing time. From S(5)=5 it can be verified that S(6)=5. A short mathematical proof for d=5 remains to be a challenging problem that also leads one to the insight of the still open 7-dimensional problem. In this article we present a vertex coloring approach on the hypercube that gives a simplified proof for d=4 and also helps toward a short mathematical proof for d=5, free of computer computations. |
doi_str_mv | 10.1016/j.dam.2020.07.008 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584777553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X20303541</els_id><sourcerecordid>2584777553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-2e947b1c07623123d55bce4431b1691a4108a8c9241978bdcd9d340adb908a043</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG8Br7bOpGmT4knEf7CwFwVvoUlmsWXbrkkr-O3Nup49DcN7b-bxY-wSIUfA6qbLfdPnAgTkoHIAfcQWqJXIKqXwmC2Sp8oE6vdTdhZjBwCYtgWD9cCnD-Junvgw95YC34XRbqnnmzH8SvKaN4PnZeZmS_GcnWyabaSLv7lkb48Pr_fP2Wr99HJ_t8qcUGrKBNVSWXSgKlGgKHxZWkdSFmixqrGRCLrRrhYSa6Wtd772hYTG2zoJIIsluzrcTXU-Z4qT6cY5DOmlEaWWSqmyLJILDy4XxhgDbcwutH0Tvg2C2YMxnUlgzB6MAWUSmJS5PWQo1f9qKZjoWhoc-TaQm4wf23_SPzwyZ2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584777553</pqid></control><display><type>article</type><title>On the cut number problem for the 4, and 5-cubes</title><source>ScienceDirect Journals</source><creator>Emamy-K, M.R. ; Arce-Nazario, R.</creator><creatorcontrib>Emamy-K, M.R. ; Arce-Nazario, R.</creatorcontrib><description>The hypercube cut number S(d) is the minimum number of hyperplanes in the d-dimensional Euclidean space that slice all the edges of the d-cube. The determination of S(d) in dimensions 5, 6, and 7, is one of the Victor Klee’s unresolved problems presented in one of his invited talks on problems from discrete geometry. The value of S(d) is unknown for d≥7, but for d≤3 it is trivial to show S(d)=d. In the late nineteen eighties, Emamy-K has shown S(4)=4 via two different proofs. More than a decade later, Sohler and Ziegler obtained a computational proof of S(5)=5 that took about two months of CPU computing time. From S(5)=5 it can be verified that S(6)=5. A short mathematical proof for d=5 remains to be a challenging problem that also leads one to the insight of the still open 7-dimensional problem. In this article we present a vertex coloring approach on the hypercube that gives a simplified proof for d=4 and also helps toward a short mathematical proof for d=5, free of computer computations.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2020.07.008</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computing time ; Convex and discrete geometry ; Cubes ; Euclidean geometry ; Euclidean space ; Hypercube cuts ; Hypercubes ; Hyperplanes ; Mathematical analysis</subject><ispartof>Discrete Applied Mathematics, 2021-11, Vol.303, p.66-75</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-2e947b1c07623123d55bce4431b1691a4108a8c9241978bdcd9d340adb908a043</cites><orcidid>0000-0001-8036-6536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Emamy-K, M.R.</creatorcontrib><creatorcontrib>Arce-Nazario, R.</creatorcontrib><title>On the cut number problem for the 4, and 5-cubes</title><title>Discrete Applied Mathematics</title><description>The hypercube cut number S(d) is the minimum number of hyperplanes in the d-dimensional Euclidean space that slice all the edges of the d-cube. The determination of S(d) in dimensions 5, 6, and 7, is one of the Victor Klee’s unresolved problems presented in one of his invited talks on problems from discrete geometry. The value of S(d) is unknown for d≥7, but for d≤3 it is trivial to show S(d)=d. In the late nineteen eighties, Emamy-K has shown S(4)=4 via two different proofs. More than a decade later, Sohler and Ziegler obtained a computational proof of S(5)=5 that took about two months of CPU computing time. From S(5)=5 it can be verified that S(6)=5. A short mathematical proof for d=5 remains to be a challenging problem that also leads one to the insight of the still open 7-dimensional problem. In this article we present a vertex coloring approach on the hypercube that gives a simplified proof for d=4 and also helps toward a short mathematical proof for d=5, free of computer computations.</description><subject>Computing time</subject><subject>Convex and discrete geometry</subject><subject>Cubes</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Hypercube cuts</subject><subject>Hypercubes</subject><subject>Hyperplanes</subject><subject>Mathematical analysis</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG8Br7bOpGmT4knEf7CwFwVvoUlmsWXbrkkr-O3Nup49DcN7b-bxY-wSIUfA6qbLfdPnAgTkoHIAfcQWqJXIKqXwmC2Sp8oE6vdTdhZjBwCYtgWD9cCnD-Junvgw95YC34XRbqnnmzH8SvKaN4PnZeZmS_GcnWyabaSLv7lkb48Pr_fP2Wr99HJ_t8qcUGrKBNVSWXSgKlGgKHxZWkdSFmixqrGRCLrRrhYSa6Wtd772hYTG2zoJIIsluzrcTXU-Z4qT6cY5DOmlEaWWSqmyLJILDy4XxhgDbcwutH0Tvg2C2YMxnUlgzB6MAWUSmJS5PWQo1f9qKZjoWhoc-TaQm4wf23_SPzwyZ2U</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Emamy-K, M.R.</creator><creator>Arce-Nazario, R.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8036-6536</orcidid></search><sort><creationdate>20211115</creationdate><title>On the cut number problem for the 4, and 5-cubes</title><author>Emamy-K, M.R. ; Arce-Nazario, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-2e947b1c07623123d55bce4431b1691a4108a8c9241978bdcd9d340adb908a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computing time</topic><topic>Convex and discrete geometry</topic><topic>Cubes</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Hypercube cuts</topic><topic>Hypercubes</topic><topic>Hyperplanes</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emamy-K, M.R.</creatorcontrib><creatorcontrib>Arce-Nazario, R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emamy-K, M.R.</au><au>Arce-Nazario, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the cut number problem for the 4, and 5-cubes</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>303</volume><spage>66</spage><epage>75</epage><pages>66-75</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>The hypercube cut number S(d) is the minimum number of hyperplanes in the d-dimensional Euclidean space that slice all the edges of the d-cube. The determination of S(d) in dimensions 5, 6, and 7, is one of the Victor Klee’s unresolved problems presented in one of his invited talks on problems from discrete geometry. The value of S(d) is unknown for d≥7, but for d≤3 it is trivial to show S(d)=d. In the late nineteen eighties, Emamy-K has shown S(4)=4 via two different proofs. More than a decade later, Sohler and Ziegler obtained a computational proof of S(5)=5 that took about two months of CPU computing time. From S(5)=5 it can be verified that S(6)=5. A short mathematical proof for d=5 remains to be a challenging problem that also leads one to the insight of the still open 7-dimensional problem. In this article we present a vertex coloring approach on the hypercube that gives a simplified proof for d=4 and also helps toward a short mathematical proof for d=5, free of computer computations.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2020.07.008</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8036-6536</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2021-11, Vol.303, p.66-75 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2584777553 |
source | ScienceDirect Journals |
subjects | Computing time Convex and discrete geometry Cubes Euclidean geometry Euclidean space Hypercube cuts Hypercubes Hyperplanes Mathematical analysis |
title | On the cut number problem for the 4, and 5-cubes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A52%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20cut%20number%20problem%20for%20the%204,%20and%205-cubes&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Emamy-K,%20M.R.&rft.date=2021-11-15&rft.volume=303&rft.spage=66&rft.epage=75&rft.pages=66-75&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2020.07.008&rft_dat=%3Cproquest_cross%3E2584777553%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-2e947b1c07623123d55bce4431b1691a4108a8c9241978bdcd9d340adb908a043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2584777553&rft_id=info:pmid/&rfr_iscdi=true |