Loading…
On-Demanding Information Acquisition in Multi-UAV-Assisted Sensor Network: A Satisfaction-Driven Perspective
When multiple heterogeneous unmanned aerial vehicles (UAVs) provide service for multiple users in sensor networks, users’ diverse priorities and corresponding priority-related satisfaction are rarely concerned in traditional task assignment algorithms. A priority-driven user satisfaction model is pr...
Saved in:
Published in: | Mathematical problems in engineering 2021-10, Vol.2021, p.1-14 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | When multiple heterogeneous unmanned aerial vehicles (UAVs) provide service for multiple users in sensor networks, users’ diverse priorities and corresponding priority-related satisfaction are rarely concerned in traditional task assignment algorithms. A priority-driven user satisfaction model is proposed, in which a piecewise function considering soft time window and users’ different priority levels is designed to describe the relationship between user priority and user satisfaction. On this basis, the multi-UAV task assignment problem is formulated as a combinatorial optimization problem with multiple constraints, where the objective is maximizing the priority-weighted satisfaction of users while minimizing the total energy consumption of UAVs. A multipopulation-based cooperation genetic algorithm (MPCGA) by adapting the idea of “exploration-exploitation” into traditional genetic algorithms (GAs) is proposed, which can solve the task assignment problem in polynomial time. Simulation results show that compared with the algorithm without considering users’ priority-based satisfaction, users’ weighted satisfaction can be improved by about 47% based on our algorithm in situations where users’ information acquisition is tight time-window constraints. In comparison, UAVs’ energy consumption only increased by about 6%. Besides, compared with traditional GA, our proposed algorithm can also improve users’ weighted satisfaction by about 5% with almost the same energy consumption of UAVs. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2021/2717733 |