Loading…
Deep learning-based visual crack detection using Google Street View images
In this study, the utility of using Google Street View (GSV) for evaluating the quality of pavement is investigated. A convolutional neural network (CNN) is developed to perform image classification on GSV pavement images. Pavement images are extracted from GSV and then divided into smaller image pa...
Saved in:
Published in: | Neural computing & applications 2021-11, Vol.33 (21), p.14565-14582 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-68708bf1e922d20ead65878a6a815ea653ffa49d179c990e461ff1493570b4363 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-68708bf1e922d20ead65878a6a815ea653ffa49d179c990e461ff1493570b4363 |
container_end_page | 14582 |
container_issue | 21 |
container_start_page | 14565 |
container_title | Neural computing & applications |
container_volume | 33 |
creator | Maniat, Mohsen Camp, Charles V. Kashani, Ali R. |
description | In this study, the utility of using Google Street View (GSV) for evaluating the quality of pavement is investigated. A convolutional neural network (CNN) is developed to perform image classification on GSV pavement images. Pavement images are extracted from GSV and then divided into smaller image patches to form data sets. Each image patch is visually classified into different categories of pavement cracks based on the standard practice. A comparative study of pavement quality assessment is conducted between the results of the CNN classified image patches obtained from GSV and those from a sophisticated commercial visual inspection company. The result of the comparison indicates the feasibility and effectiveness of using GSV images for pavement evaluation. The trained network is then tested on a new data set. This study shows that the designed CNN helps classify the pavement images into different defined crack categories. |
doi_str_mv | 10.1007/s00521-021-06098-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2585227819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585227819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-68708bf1e922d20ead65878a6a815ea653ffa49d179c990e461ff1493570b4363</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-A54CnqOTzyZHWXVVBA9-XEO2nZautV2TVvG_t6WCNw-POczvvRkeIacczjlAdpEAtOAMJhlwlsEeWXAlJZOg7T5ZgFPTSslDcpTSFgCUsXpB7q8Qd7TBENu6rdgmJCzoZ52G0NA8hvyNFthj3tddS4c0InTddVWD9KmPiD19rfGL1u-hwnRMDsrQJDz5nUvycnP9vLplD4_ru9XlA8sldz0zNgO7KTk6IQoBGAqjbWaDCZZrDEbLsgzKFTxzuXOAyvCy5MpJncFGSSOX5GzO3cXuY8DU-203xHY86YW2WojMcjdSYqby2KUUsfS7OP4Zvz0HP3Xm5848TJo68zCa5GxKI9xWGP-i_3H9ABXzbaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585227819</pqid></control><display><type>article</type><title>Deep learning-based visual crack detection using Google Street View images</title><source>Springer Nature</source><creator>Maniat, Mohsen ; Camp, Charles V. ; Kashani, Ali R.</creator><creatorcontrib>Maniat, Mohsen ; Camp, Charles V. ; Kashani, Ali R.</creatorcontrib><description>In this study, the utility of using Google Street View (GSV) for evaluating the quality of pavement is investigated. A convolutional neural network (CNN) is developed to perform image classification on GSV pavement images. Pavement images are extracted from GSV and then divided into smaller image patches to form data sets. Each image patch is visually classified into different categories of pavement cracks based on the standard practice. A comparative study of pavement quality assessment is conducted between the results of the CNN classified image patches obtained from GSV and those from a sophisticated commercial visual inspection company. The result of the comparison indicates the feasibility and effectiveness of using GSV images for pavement evaluation. The trained network is then tested on a new data set. This study shows that the designed CNN helps classify the pavement images into different defined crack categories.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-021-06098-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Asphalt pavements ; Comparative studies ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Datasets ; Evaluation ; Image classification ; Image Processing and Computer Vision ; Inspection ; Machine learning ; Neural networks ; Original Article ; Pavements ; Probability and Statistics in Computer Science ; Quality assessment ; Smartphones</subject><ispartof>Neural computing & applications, 2021-11, Vol.33 (21), p.14565-14582</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-68708bf1e922d20ead65878a6a815ea653ffa49d179c990e461ff1493570b4363</citedby><cites>FETCH-LOGICAL-c319t-68708bf1e922d20ead65878a6a815ea653ffa49d179c990e461ff1493570b4363</cites><orcidid>0000-0002-3580-4880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Maniat, Mohsen</creatorcontrib><creatorcontrib>Camp, Charles V.</creatorcontrib><creatorcontrib>Kashani, Ali R.</creatorcontrib><title>Deep learning-based visual crack detection using Google Street View images</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>In this study, the utility of using Google Street View (GSV) for evaluating the quality of pavement is investigated. A convolutional neural network (CNN) is developed to perform image classification on GSV pavement images. Pavement images are extracted from GSV and then divided into smaller image patches to form data sets. Each image patch is visually classified into different categories of pavement cracks based on the standard practice. A comparative study of pavement quality assessment is conducted between the results of the CNN classified image patches obtained from GSV and those from a sophisticated commercial visual inspection company. The result of the comparison indicates the feasibility and effectiveness of using GSV images for pavement evaluation. The trained network is then tested on a new data set. This study shows that the designed CNN helps classify the pavement images into different defined crack categories.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Asphalt pavements</subject><subject>Comparative studies</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Evaluation</subject><subject>Image classification</subject><subject>Image Processing and Computer Vision</subject><subject>Inspection</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Pavements</subject><subject>Probability and Statistics in Computer Science</subject><subject>Quality assessment</subject><subject>Smartphones</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-A54CnqOTzyZHWXVVBA9-XEO2nZautV2TVvG_t6WCNw-POczvvRkeIacczjlAdpEAtOAMJhlwlsEeWXAlJZOg7T5ZgFPTSslDcpTSFgCUsXpB7q8Qd7TBENu6rdgmJCzoZ52G0NA8hvyNFthj3tddS4c0InTddVWD9KmPiD19rfGL1u-hwnRMDsrQJDz5nUvycnP9vLplD4_ru9XlA8sldz0zNgO7KTk6IQoBGAqjbWaDCZZrDEbLsgzKFTxzuXOAyvCy5MpJncFGSSOX5GzO3cXuY8DU-203xHY86YW2WojMcjdSYqby2KUUsfS7OP4Zvz0HP3Xm5848TJo68zCa5GxKI9xWGP-i_3H9ABXzbaE</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Maniat, Mohsen</creator><creator>Camp, Charles V.</creator><creator>Kashani, Ali R.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3580-4880</orcidid></search><sort><creationdate>20211101</creationdate><title>Deep learning-based visual crack detection using Google Street View images</title><author>Maniat, Mohsen ; Camp, Charles V. ; Kashani, Ali R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-68708bf1e922d20ead65878a6a815ea653ffa49d179c990e461ff1493570b4363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Asphalt pavements</topic><topic>Comparative studies</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Evaluation</topic><topic>Image classification</topic><topic>Image Processing and Computer Vision</topic><topic>Inspection</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Pavements</topic><topic>Probability and Statistics in Computer Science</topic><topic>Quality assessment</topic><topic>Smartphones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maniat, Mohsen</creatorcontrib><creatorcontrib>Camp, Charles V.</creatorcontrib><creatorcontrib>Kashani, Ali R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maniat, Mohsen</au><au>Camp, Charles V.</au><au>Kashani, Ali R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning-based visual crack detection using Google Street View images</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>33</volume><issue>21</issue><spage>14565</spage><epage>14582</epage><pages>14565-14582</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In this study, the utility of using Google Street View (GSV) for evaluating the quality of pavement is investigated. A convolutional neural network (CNN) is developed to perform image classification on GSV pavement images. Pavement images are extracted from GSV and then divided into smaller image patches to form data sets. Each image patch is visually classified into different categories of pavement cracks based on the standard practice. A comparative study of pavement quality assessment is conducted between the results of the CNN classified image patches obtained from GSV and those from a sophisticated commercial visual inspection company. The result of the comparison indicates the feasibility and effectiveness of using GSV images for pavement evaluation. The trained network is then tested on a new data set. This study shows that the designed CNN helps classify the pavement images into different defined crack categories.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-021-06098-0</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3580-4880</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2021-11, Vol.33 (21), p.14565-14582 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2585227819 |
source | Springer Nature |
subjects | Artificial Intelligence Artificial neural networks Asphalt pavements Comparative studies Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Datasets Evaluation Image classification Image Processing and Computer Vision Inspection Machine learning Neural networks Original Article Pavements Probability and Statistics in Computer Science Quality assessment Smartphones |
title | Deep learning-based visual crack detection using Google Street View images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning-based%20visual%20crack%20detection%20using%20Google%20Street%20View%20images&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Maniat,%20Mohsen&rft.date=2021-11-01&rft.volume=33&rft.issue=21&rft.spage=14565&rft.epage=14582&rft.pages=14565-14582&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-021-06098-0&rft_dat=%3Cproquest_cross%3E2585227819%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-68708bf1e922d20ead65878a6a815ea653ffa49d179c990e461ff1493570b4363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2585227819&rft_id=info:pmid/&rfr_iscdi=true |