Loading…

Deep learning-based visual crack detection using Google Street View images

In this study, the utility of using Google Street View (GSV) for evaluating the quality of pavement is investigated. A convolutional neural network (CNN) is developed to perform image classification on GSV pavement images. Pavement images are extracted from GSV and then divided into smaller image pa...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2021-11, Vol.33 (21), p.14565-14582
Main Authors: Maniat, Mohsen, Camp, Charles V., Kashani, Ali R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-68708bf1e922d20ead65878a6a815ea653ffa49d179c990e461ff1493570b4363
cites cdi_FETCH-LOGICAL-c319t-68708bf1e922d20ead65878a6a815ea653ffa49d179c990e461ff1493570b4363
container_end_page 14582
container_issue 21
container_start_page 14565
container_title Neural computing & applications
container_volume 33
creator Maniat, Mohsen
Camp, Charles V.
Kashani, Ali R.
description In this study, the utility of using Google Street View (GSV) for evaluating the quality of pavement is investigated. A convolutional neural network (CNN) is developed to perform image classification on GSV pavement images. Pavement images are extracted from GSV and then divided into smaller image patches to form data sets. Each image patch is visually classified into different categories of pavement cracks based on the standard practice. A comparative study of pavement quality assessment is conducted between the results of the CNN classified image patches obtained from GSV and those from a sophisticated commercial visual inspection company. The result of the comparison indicates the feasibility and effectiveness of using GSV images for pavement evaluation. The trained network is then tested on a new data set. This study shows that the designed CNN helps classify the pavement images into different defined crack categories.
doi_str_mv 10.1007/s00521-021-06098-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2585227819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585227819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-68708bf1e922d20ead65878a6a815ea653ffa49d179c990e461ff1493570b4363</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-A54CnqOTzyZHWXVVBA9-XEO2nZautV2TVvG_t6WCNw-POczvvRkeIacczjlAdpEAtOAMJhlwlsEeWXAlJZOg7T5ZgFPTSslDcpTSFgCUsXpB7q8Qd7TBENu6rdgmJCzoZ52G0NA8hvyNFthj3tddS4c0InTddVWD9KmPiD19rfGL1u-hwnRMDsrQJDz5nUvycnP9vLplD4_ru9XlA8sldz0zNgO7KTk6IQoBGAqjbWaDCZZrDEbLsgzKFTxzuXOAyvCy5MpJncFGSSOX5GzO3cXuY8DU-203xHY86YW2WojMcjdSYqby2KUUsfS7OP4Zvz0HP3Xm5848TJo68zCa5GxKI9xWGP-i_3H9ABXzbaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585227819</pqid></control><display><type>article</type><title>Deep learning-based visual crack detection using Google Street View images</title><source>Springer Nature</source><creator>Maniat, Mohsen ; Camp, Charles V. ; Kashani, Ali R.</creator><creatorcontrib>Maniat, Mohsen ; Camp, Charles V. ; Kashani, Ali R.</creatorcontrib><description>In this study, the utility of using Google Street View (GSV) for evaluating the quality of pavement is investigated. A convolutional neural network (CNN) is developed to perform image classification on GSV pavement images. Pavement images are extracted from GSV and then divided into smaller image patches to form data sets. Each image patch is visually classified into different categories of pavement cracks based on the standard practice. A comparative study of pavement quality assessment is conducted between the results of the CNN classified image patches obtained from GSV and those from a sophisticated commercial visual inspection company. The result of the comparison indicates the feasibility and effectiveness of using GSV images for pavement evaluation. The trained network is then tested on a new data set. This study shows that the designed CNN helps classify the pavement images into different defined crack categories.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-021-06098-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Asphalt pavements ; Comparative studies ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Datasets ; Evaluation ; Image classification ; Image Processing and Computer Vision ; Inspection ; Machine learning ; Neural networks ; Original Article ; Pavements ; Probability and Statistics in Computer Science ; Quality assessment ; Smartphones</subject><ispartof>Neural computing &amp; applications, 2021-11, Vol.33 (21), p.14565-14582</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-68708bf1e922d20ead65878a6a815ea653ffa49d179c990e461ff1493570b4363</citedby><cites>FETCH-LOGICAL-c319t-68708bf1e922d20ead65878a6a815ea653ffa49d179c990e461ff1493570b4363</cites><orcidid>0000-0002-3580-4880</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Maniat, Mohsen</creatorcontrib><creatorcontrib>Camp, Charles V.</creatorcontrib><creatorcontrib>Kashani, Ali R.</creatorcontrib><title>Deep learning-based visual crack detection using Google Street View images</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>In this study, the utility of using Google Street View (GSV) for evaluating the quality of pavement is investigated. A convolutional neural network (CNN) is developed to perform image classification on GSV pavement images. Pavement images are extracted from GSV and then divided into smaller image patches to form data sets. Each image patch is visually classified into different categories of pavement cracks based on the standard practice. A comparative study of pavement quality assessment is conducted between the results of the CNN classified image patches obtained from GSV and those from a sophisticated commercial visual inspection company. The result of the comparison indicates the feasibility and effectiveness of using GSV images for pavement evaluation. The trained network is then tested on a new data set. This study shows that the designed CNN helps classify the pavement images into different defined crack categories.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Asphalt pavements</subject><subject>Comparative studies</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Datasets</subject><subject>Evaluation</subject><subject>Image classification</subject><subject>Image Processing and Computer Vision</subject><subject>Inspection</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Pavements</subject><subject>Probability and Statistics in Computer Science</subject><subject>Quality assessment</subject><subject>Smartphones</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-A54CnqOTzyZHWXVVBA9-XEO2nZautV2TVvG_t6WCNw-POczvvRkeIacczjlAdpEAtOAMJhlwlsEeWXAlJZOg7T5ZgFPTSslDcpTSFgCUsXpB7q8Qd7TBENu6rdgmJCzoZ52G0NA8hvyNFthj3tddS4c0InTddVWD9KmPiD19rfGL1u-hwnRMDsrQJDz5nUvycnP9vLplD4_ru9XlA8sldz0zNgO7KTk6IQoBGAqjbWaDCZZrDEbLsgzKFTxzuXOAyvCy5MpJncFGSSOX5GzO3cXuY8DU-203xHY86YW2WojMcjdSYqby2KUUsfS7OP4Zvz0HP3Xm5848TJo68zCa5GxKI9xWGP-i_3H9ABXzbaE</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Maniat, Mohsen</creator><creator>Camp, Charles V.</creator><creator>Kashani, Ali R.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3580-4880</orcidid></search><sort><creationdate>20211101</creationdate><title>Deep learning-based visual crack detection using Google Street View images</title><author>Maniat, Mohsen ; Camp, Charles V. ; Kashani, Ali R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-68708bf1e922d20ead65878a6a815ea653ffa49d179c990e461ff1493570b4363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Asphalt pavements</topic><topic>Comparative studies</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Datasets</topic><topic>Evaluation</topic><topic>Image classification</topic><topic>Image Processing and Computer Vision</topic><topic>Inspection</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Pavements</topic><topic>Probability and Statistics in Computer Science</topic><topic>Quality assessment</topic><topic>Smartphones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maniat, Mohsen</creatorcontrib><creatorcontrib>Camp, Charles V.</creatorcontrib><creatorcontrib>Kashani, Ali R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maniat, Mohsen</au><au>Camp, Charles V.</au><au>Kashani, Ali R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning-based visual crack detection using Google Street View images</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>33</volume><issue>21</issue><spage>14565</spage><epage>14582</epage><pages>14565-14582</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In this study, the utility of using Google Street View (GSV) for evaluating the quality of pavement is investigated. A convolutional neural network (CNN) is developed to perform image classification on GSV pavement images. Pavement images are extracted from GSV and then divided into smaller image patches to form data sets. Each image patch is visually classified into different categories of pavement cracks based on the standard practice. A comparative study of pavement quality assessment is conducted between the results of the CNN classified image patches obtained from GSV and those from a sophisticated commercial visual inspection company. The result of the comparison indicates the feasibility and effectiveness of using GSV images for pavement evaluation. The trained network is then tested on a new data set. This study shows that the designed CNN helps classify the pavement images into different defined crack categories.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-021-06098-0</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3580-4880</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2021-11, Vol.33 (21), p.14565-14582
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2585227819
source Springer Nature
subjects Artificial Intelligence
Artificial neural networks
Asphalt pavements
Comparative studies
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Datasets
Evaluation
Image classification
Image Processing and Computer Vision
Inspection
Machine learning
Neural networks
Original Article
Pavements
Probability and Statistics in Computer Science
Quality assessment
Smartphones
title Deep learning-based visual crack detection using Google Street View images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning-based%20visual%20crack%20detection%20using%20Google%20Street%20View%20images&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Maniat,%20Mohsen&rft.date=2021-11-01&rft.volume=33&rft.issue=21&rft.spage=14565&rft.epage=14582&rft.pages=14565-14582&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-021-06098-0&rft_dat=%3Cproquest_cross%3E2585227819%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-68708bf1e922d20ead65878a6a815ea653ffa49d179c990e461ff1493570b4363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2585227819&rft_id=info:pmid/&rfr_iscdi=true