Loading…

RetrieveNet: a novel deep network for medical image retrieval

Content-Based Image Retrieval is an accurate characterization of visual information used for medical and natural image classification, retrieval, face recognition, etc. In recent years, deep networks achieved state-of-the-art accuracy in various vision tasks. In this paper, we propose an end-to-end...

Full description

Saved in:
Bibliographic Details
Published in:Evolutionary intelligence 2021-12, Vol.14 (4), p.1449-1458
Main Authors: Hussain, Chesti Altaff, Rao, Dhulipalla Venkata, Mastani, S. Aruna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-de1ca7acab4fb8647ddfce967a702ae841ec3aeec7f087f92dd05367ea83e1a73
cites cdi_FETCH-LOGICAL-c319t-de1ca7acab4fb8647ddfce967a702ae841ec3aeec7f087f92dd05367ea83e1a73
container_end_page 1458
container_issue 4
container_start_page 1449
container_title Evolutionary intelligence
container_volume 14
creator Hussain, Chesti Altaff
Rao, Dhulipalla Venkata
Mastani, S. Aruna
description Content-Based Image Retrieval is an accurate characterization of visual information used for medical and natural image classification, retrieval, face recognition, etc. In recent years, deep networks achieved state-of-the-art accuracy in various vision tasks. In this paper, we propose an end-to-end approach for medical image retrieval. The proposed approach comprises a novel deep network for classification of input query image followed by the retrieval module to retrieve the images belongs to the query image class. The proposed network comprises of multi-scale filter bank for robust feature extraction. We make use of skip connections to share the initially learned features across the network. The performance of the proposed network for medical image retrieval is validated in terms of precision and recall on three publicly available medical image databases. We validated the proposed approach for two different image modalities, namely CT scans and MRI scans. Performance evaluation depicts that proposed RetrieveNet outperforms other existing methods for medical image retrieval.
doi_str_mv 10.1007/s12065-020-00401-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2585419200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585419200</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-de1ca7acab4fb8647ddfce967a702ae841ec3aeec7f087f92dd05367ea83e1a73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS_ciu4EGKX1AURM9hmkxK63a3JlvF_nqjK3rzNHN4n3eGh7FjCacSQJ9FqaAsBCgQADlIsd1hI1mVuShqqXd_d6j32UGMS4BSgc5H7OKR-rCgN7qn_pwjb7s3argjWvOW-vcuvHDfBb4it7DY8MUK58TDwGBzyPY8NpGOfuaYPV9fPU1uxfTh5m5yORU2k3UvHEmLGi3Ocj9Lj2jnvKW61KhBIVW5JJshkdUeKu1r5RwUWakJq4wk6mzMTobedeheNxR7s-w2oU0njSqqIpe1AkgpNaRs6GIM5M06pIfDh5FgvjSZQZNJmsy3JrNNUDZAMYXbOYW_6n-oT4qma8I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585419200</pqid></control><display><type>article</type><title>RetrieveNet: a novel deep network for medical image retrieval</title><source>Springer Nature</source><creator>Hussain, Chesti Altaff ; Rao, Dhulipalla Venkata ; Mastani, S. Aruna</creator><creatorcontrib>Hussain, Chesti Altaff ; Rao, Dhulipalla Venkata ; Mastani, S. Aruna</creatorcontrib><description>Content-Based Image Retrieval is an accurate characterization of visual information used for medical and natural image classification, retrieval, face recognition, etc. In recent years, deep networks achieved state-of-the-art accuracy in various vision tasks. In this paper, we propose an end-to-end approach for medical image retrieval. The proposed approach comprises a novel deep network for classification of input query image followed by the retrieval module to retrieve the images belongs to the query image class. The proposed network comprises of multi-scale filter bank for robust feature extraction. We make use of skip connections to share the initially learned features across the network. The performance of the proposed network for medical image retrieval is validated in terms of precision and recall on three publicly available medical image databases. We validated the proposed approach for two different image modalities, namely CT scans and MRI scans. Performance evaluation depicts that proposed RetrieveNet outperforms other existing methods for medical image retrieval.</description><identifier>ISSN: 1864-5909</identifier><identifier>EISSN: 1864-5917</identifier><identifier>DOI: 10.1007/s12065-020-00401-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Computed tomography ; Control ; Engineering ; Face recognition ; Feature extraction ; Filter banks ; Image classification ; Image management ; Image retrieval ; Magnetic resonance imaging ; Mathematical and Computational Engineering ; Mechatronics ; Medical imaging ; Object recognition ; Performance evaluation ; Research Paper ; Robotics ; Statistical Physics and Dynamical Systems</subject><ispartof>Evolutionary intelligence, 2021-12, Vol.14 (4), p.1449-1458</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-de1ca7acab4fb8647ddfce967a702ae841ec3aeec7f087f92dd05367ea83e1a73</citedby><cites>FETCH-LOGICAL-c319t-de1ca7acab4fb8647ddfce967a702ae841ec3aeec7f087f92dd05367ea83e1a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Hussain, Chesti Altaff</creatorcontrib><creatorcontrib>Rao, Dhulipalla Venkata</creatorcontrib><creatorcontrib>Mastani, S. Aruna</creatorcontrib><title>RetrieveNet: a novel deep network for medical image retrieval</title><title>Evolutionary intelligence</title><addtitle>Evol. Intel</addtitle><description>Content-Based Image Retrieval is an accurate characterization of visual information used for medical and natural image classification, retrieval, face recognition, etc. In recent years, deep networks achieved state-of-the-art accuracy in various vision tasks. In this paper, we propose an end-to-end approach for medical image retrieval. The proposed approach comprises a novel deep network for classification of input query image followed by the retrieval module to retrieve the images belongs to the query image class. The proposed network comprises of multi-scale filter bank for robust feature extraction. We make use of skip connections to share the initially learned features across the network. The performance of the proposed network for medical image retrieval is validated in terms of precision and recall on three publicly available medical image databases. We validated the proposed approach for two different image modalities, namely CT scans and MRI scans. Performance evaluation depicts that proposed RetrieveNet outperforms other existing methods for medical image retrieval.</description><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Computed tomography</subject><subject>Control</subject><subject>Engineering</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Filter banks</subject><subject>Image classification</subject><subject>Image management</subject><subject>Image retrieval</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Medical imaging</subject><subject>Object recognition</subject><subject>Performance evaluation</subject><subject>Research Paper</subject><subject>Robotics</subject><subject>Statistical Physics and Dynamical Systems</subject><issn>1864-5909</issn><issn>1864-5917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SS_ciu4EGKX1AURM9hmkxK63a3JlvF_nqjK3rzNHN4n3eGh7FjCacSQJ9FqaAsBCgQADlIsd1hI1mVuShqqXd_d6j32UGMS4BSgc5H7OKR-rCgN7qn_pwjb7s3argjWvOW-vcuvHDfBb4it7DY8MUK58TDwGBzyPY8NpGOfuaYPV9fPU1uxfTh5m5yORU2k3UvHEmLGi3Ocj9Lj2jnvKW61KhBIVW5JJshkdUeKu1r5RwUWakJq4wk6mzMTobedeheNxR7s-w2oU0njSqqIpe1AkgpNaRs6GIM5M06pIfDh5FgvjSZQZNJmsy3JrNNUDZAMYXbOYW_6n-oT4qma8I</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Hussain, Chesti Altaff</creator><creator>Rao, Dhulipalla Venkata</creator><creator>Mastani, S. Aruna</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>RetrieveNet: a novel deep network for medical image retrieval</title><author>Hussain, Chesti Altaff ; Rao, Dhulipalla Venkata ; Mastani, S. Aruna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-de1ca7acab4fb8647ddfce967a702ae841ec3aeec7f087f92dd05367ea83e1a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Computed tomography</topic><topic>Control</topic><topic>Engineering</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Filter banks</topic><topic>Image classification</topic><topic>Image management</topic><topic>Image retrieval</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Medical imaging</topic><topic>Object recognition</topic><topic>Performance evaluation</topic><topic>Research Paper</topic><topic>Robotics</topic><topic>Statistical Physics and Dynamical Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Chesti Altaff</creatorcontrib><creatorcontrib>Rao, Dhulipalla Venkata</creatorcontrib><creatorcontrib>Mastani, S. Aruna</creatorcontrib><collection>CrossRef</collection><jtitle>Evolutionary intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Chesti Altaff</au><au>Rao, Dhulipalla Venkata</au><au>Mastani, S. Aruna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RetrieveNet: a novel deep network for medical image retrieval</atitle><jtitle>Evolutionary intelligence</jtitle><stitle>Evol. Intel</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>14</volume><issue>4</issue><spage>1449</spage><epage>1458</epage><pages>1449-1458</pages><issn>1864-5909</issn><eissn>1864-5917</eissn><abstract>Content-Based Image Retrieval is an accurate characterization of visual information used for medical and natural image classification, retrieval, face recognition, etc. In recent years, deep networks achieved state-of-the-art accuracy in various vision tasks. In this paper, we propose an end-to-end approach for medical image retrieval. The proposed approach comprises a novel deep network for classification of input query image followed by the retrieval module to retrieve the images belongs to the query image class. The proposed network comprises of multi-scale filter bank for robust feature extraction. We make use of skip connections to share the initially learned features across the network. The performance of the proposed network for medical image retrieval is validated in terms of precision and recall on three publicly available medical image databases. We validated the proposed approach for two different image modalities, namely CT scans and MRI scans. Performance evaluation depicts that proposed RetrieveNet outperforms other existing methods for medical image retrieval.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12065-020-00401-z</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1864-5909
ispartof Evolutionary intelligence, 2021-12, Vol.14 (4), p.1449-1458
issn 1864-5909
1864-5917
language eng
recordid cdi_proquest_journals_2585419200
source Springer Nature
subjects Applications of Mathematics
Artificial Intelligence
Bioinformatics
Computed tomography
Control
Engineering
Face recognition
Feature extraction
Filter banks
Image classification
Image management
Image retrieval
Magnetic resonance imaging
Mathematical and Computational Engineering
Mechatronics
Medical imaging
Object recognition
Performance evaluation
Research Paper
Robotics
Statistical Physics and Dynamical Systems
title RetrieveNet: a novel deep network for medical image retrieval
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RetrieveNet:%20a%20novel%20deep%20network%20for%20medical%20image%20retrieval&rft.jtitle=Evolutionary%20intelligence&rft.au=Hussain,%20Chesti%20Altaff&rft.date=2021-12-01&rft.volume=14&rft.issue=4&rft.spage=1449&rft.epage=1458&rft.pages=1449-1458&rft.issn=1864-5909&rft.eissn=1864-5917&rft_id=info:doi/10.1007/s12065-020-00401-z&rft_dat=%3Cproquest_cross%3E2585419200%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-de1ca7acab4fb8647ddfce967a702ae841ec3aeec7f087f92dd05367ea83e1a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2585419200&rft_id=info:pmid/&rfr_iscdi=true