Loading…
EXSCALATE: An extreme-scale in-silico virtual screening platform to evaluate 1 trillion compounds in 60 hours on 81 PFLOPS supercomputers
The social and economic impact of the COVID-19 pandemic demands the reduction of the time required to find a therapeutic cure. In the contest of urgent computing, we re-designed the Exscalate molecular docking platform to benefit from heterogeneous computation nodes and to avoid scaling issues. We d...
Saved in:
Published in: | arXiv.org 2021-10 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The social and economic impact of the COVID-19 pandemic demands the reduction of the time required to find a therapeutic cure. In the contest of urgent computing, we re-designed the Exscalate molecular docking platform to benefit from heterogeneous computation nodes and to avoid scaling issues. We deployed the Exscalate platform on two top European supercomputers (CINECA-Marconi100 and ENI-HPC5), with a combined computational power of 81 PFLOPS, to evaluate the interaction between 70 billions of small molecules and 15 binding-sites of 12 viral proteins of Sars-Cov2. The experiment lasted 60 hours and overall it performed a trillion of evaluations. |
---|---|
ISSN: | 2331-8422 |