Loading…

Sliding window-based LightGBM model for electric load forecasting using anomaly repair

Smart grids have attracted much attention recently for their potential to reduce power system operating and management costs. Smart grid core components include energy storage, renewable energy source(s), and smart meters. Smart meters collect diverse data regarding smart grid operation, which can l...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing 2021-11, Vol.77 (11), p.12857-12878
Main Authors: Park, Sungwoo, Jung, Seungmin, Jung, Seungwon, Rho, Seungmin, Hwang, Eenjun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-8de941df1970518fd8b4ac1a645b81951f52b2c7a310cefaeb193fbbc8a7e373
cites cdi_FETCH-LOGICAL-c319t-8de941df1970518fd8b4ac1a645b81951f52b2c7a310cefaeb193fbbc8a7e373
container_end_page 12878
container_issue 11
container_start_page 12857
container_title The Journal of supercomputing
container_volume 77
creator Park, Sungwoo
Jung, Seungmin
Jung, Seungwon
Rho, Seungmin
Hwang, Eenjun
description Smart grids have attracted much attention recently for their potential to reduce power system operating and management costs. Smart grid core components include energy storage, renewable energy source(s), and smart meters. Smart meters collect diverse data regarding smart grid operation, which can lead to inefficient operation if the meter data are damaged or tampered with during collection or transmission. Therefore, it is important to identify abnormalities in smart grid data and process them accordingly. Various anomaly detection models have been proposed using statistical methods, but they cannot detect some anomaly patterns accurately, and the models generally did not consider repair strategies for the detected anomalies. Anomaly repair should be included with model training to improve forecasting performance. This paper proposes a robust sliding window-based LightGBM model for short-term load forecasting using anomaly detection and repair. We first show how to detect anomalies using a variational autoencoder and then how they can be repaired using a random forest method. Finally, we verify that the proposed sliding window-based LightGBM achieves superior forecasting performance in combination with anomaly detection and repair.
doi_str_mv 10.1007/s11227-021-03787-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2585945435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585945435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8de941df1970518fd8b4ac1a645b81951f52b2c7a310cefaeb193fbbc8a7e373</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC52gmHyZ71KJVqHiweA3ZfNQt201NtpT---66gjcvMzC8z8zwIHQN5BYIkXcZgFKJCQVMmFQS8xM0ASEZJlzxUzQhJSVYCU7P0UXOa0IIZ5JN0OdHU7u6XRX7unVxjyuTvSsW9eqrmz--FZvofFOEmArfeNul2hZNNG6YeGtyN5C7PFTTxo1pDkXyW1OnS3QWTJP91W-fouXz03L2ghfv89fZwwJbBmWHlfMlBxeglESACk5V3Fgw91xUCkoBQdCKWmkYEOuD8RWULFSVVUb6_v8puhnXblP83vnc6XXcpba_qKlQouSCM9Gn6JiyKeacfNDbVG9MOmggetCnR32616d_9GneQ2yEch9uVz79rf6HOgL3gXNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585945435</pqid></control><display><type>article</type><title>Sliding window-based LightGBM model for electric load forecasting using anomaly repair</title><source>Springer Link</source><creator>Park, Sungwoo ; Jung, Seungmin ; Jung, Seungwon ; Rho, Seungmin ; Hwang, Eenjun</creator><creatorcontrib>Park, Sungwoo ; Jung, Seungmin ; Jung, Seungwon ; Rho, Seungmin ; Hwang, Eenjun</creatorcontrib><description>Smart grids have attracted much attention recently for their potential to reduce power system operating and management costs. Smart grid core components include energy storage, renewable energy source(s), and smart meters. Smart meters collect diverse data regarding smart grid operation, which can lead to inefficient operation if the meter data are damaged or tampered with during collection or transmission. Therefore, it is important to identify abnormalities in smart grid data and process them accordingly. Various anomaly detection models have been proposed using statistical methods, but they cannot detect some anomaly patterns accurately, and the models generally did not consider repair strategies for the detected anomalies. Anomaly repair should be included with model training to improve forecasting performance. This paper proposes a robust sliding window-based LightGBM model for short-term load forecasting using anomaly detection and repair. We first show how to detect anomalies using a variational autoencoder and then how they can be repaired using a random forest method. Finally, we verify that the proposed sliding window-based LightGBM achieves superior forecasting performance in combination with anomaly detection and repair.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-021-03787-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abnormalities ; Anomalies ; Artificial Intelligence for Smart Cities ; Compilers ; Computer Science ; Electric power systems ; Electrical loads ; Energy storage ; Forecasting ; Interpreters ; Mathematical models ; Processor Architectures ; Programming Languages ; Repair ; Sliding ; Smart grid ; Statistical methods</subject><ispartof>The Journal of supercomputing, 2021-11, Vol.77 (11), p.12857-12878</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8de941df1970518fd8b4ac1a645b81951f52b2c7a310cefaeb193fbbc8a7e373</citedby><cites>FETCH-LOGICAL-c319t-8de941df1970518fd8b4ac1a645b81951f52b2c7a310cefaeb193fbbc8a7e373</cites><orcidid>0000-0002-0418-4092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Park, Sungwoo</creatorcontrib><creatorcontrib>Jung, Seungmin</creatorcontrib><creatorcontrib>Jung, Seungwon</creatorcontrib><creatorcontrib>Rho, Seungmin</creatorcontrib><creatorcontrib>Hwang, Eenjun</creatorcontrib><title>Sliding window-based LightGBM model for electric load forecasting using anomaly repair</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Smart grids have attracted much attention recently for their potential to reduce power system operating and management costs. Smart grid core components include energy storage, renewable energy source(s), and smart meters. Smart meters collect diverse data regarding smart grid operation, which can lead to inefficient operation if the meter data are damaged or tampered with during collection or transmission. Therefore, it is important to identify abnormalities in smart grid data and process them accordingly. Various anomaly detection models have been proposed using statistical methods, but they cannot detect some anomaly patterns accurately, and the models generally did not consider repair strategies for the detected anomalies. Anomaly repair should be included with model training to improve forecasting performance. This paper proposes a robust sliding window-based LightGBM model for short-term load forecasting using anomaly detection and repair. We first show how to detect anomalies using a variational autoencoder and then how they can be repaired using a random forest method. Finally, we verify that the proposed sliding window-based LightGBM achieves superior forecasting performance in combination with anomaly detection and repair.</description><subject>Abnormalities</subject><subject>Anomalies</subject><subject>Artificial Intelligence for Smart Cities</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Electric power systems</subject><subject>Electrical loads</subject><subject>Energy storage</subject><subject>Forecasting</subject><subject>Interpreters</subject><subject>Mathematical models</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Repair</subject><subject>Sliding</subject><subject>Smart grid</subject><subject>Statistical methods</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC52gmHyZ71KJVqHiweA3ZfNQt201NtpT---66gjcvMzC8z8zwIHQN5BYIkXcZgFKJCQVMmFQS8xM0ASEZJlzxUzQhJSVYCU7P0UXOa0IIZ5JN0OdHU7u6XRX7unVxjyuTvSsW9eqrmz--FZvofFOEmArfeNul2hZNNG6YeGtyN5C7PFTTxo1pDkXyW1OnS3QWTJP91W-fouXz03L2ghfv89fZwwJbBmWHlfMlBxeglESACk5V3Fgw91xUCkoBQdCKWmkYEOuD8RWULFSVVUb6_v8puhnXblP83vnc6XXcpba_qKlQouSCM9Gn6JiyKeacfNDbVG9MOmggetCnR32616d_9GneQ2yEch9uVz79rf6HOgL3gXNg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Park, Sungwoo</creator><creator>Jung, Seungmin</creator><creator>Jung, Seungwon</creator><creator>Rho, Seungmin</creator><creator>Hwang, Eenjun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0418-4092</orcidid></search><sort><creationdate>20211101</creationdate><title>Sliding window-based LightGBM model for electric load forecasting using anomaly repair</title><author>Park, Sungwoo ; Jung, Seungmin ; Jung, Seungwon ; Rho, Seungmin ; Hwang, Eenjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8de941df1970518fd8b4ac1a645b81951f52b2c7a310cefaeb193fbbc8a7e373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abnormalities</topic><topic>Anomalies</topic><topic>Artificial Intelligence for Smart Cities</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Electric power systems</topic><topic>Electrical loads</topic><topic>Energy storage</topic><topic>Forecasting</topic><topic>Interpreters</topic><topic>Mathematical models</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Repair</topic><topic>Sliding</topic><topic>Smart grid</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Sungwoo</creatorcontrib><creatorcontrib>Jung, Seungmin</creatorcontrib><creatorcontrib>Jung, Seungwon</creatorcontrib><creatorcontrib>Rho, Seungmin</creatorcontrib><creatorcontrib>Hwang, Eenjun</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Sungwoo</au><au>Jung, Seungmin</au><au>Jung, Seungwon</au><au>Rho, Seungmin</au><au>Hwang, Eenjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliding window-based LightGBM model for electric load forecasting using anomaly repair</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>77</volume><issue>11</issue><spage>12857</spage><epage>12878</epage><pages>12857-12878</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Smart grids have attracted much attention recently for their potential to reduce power system operating and management costs. Smart grid core components include energy storage, renewable energy source(s), and smart meters. Smart meters collect diverse data regarding smart grid operation, which can lead to inefficient operation if the meter data are damaged or tampered with during collection or transmission. Therefore, it is important to identify abnormalities in smart grid data and process them accordingly. Various anomaly detection models have been proposed using statistical methods, but they cannot detect some anomaly patterns accurately, and the models generally did not consider repair strategies for the detected anomalies. Anomaly repair should be included with model training to improve forecasting performance. This paper proposes a robust sliding window-based LightGBM model for short-term load forecasting using anomaly detection and repair. We first show how to detect anomalies using a variational autoencoder and then how they can be repaired using a random forest method. Finally, we verify that the proposed sliding window-based LightGBM achieves superior forecasting performance in combination with anomaly detection and repair.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-021-03787-4</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-0418-4092</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2021-11, Vol.77 (11), p.12857-12878
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2585945435
source Springer Link
subjects Abnormalities
Anomalies
Artificial Intelligence for Smart Cities
Compilers
Computer Science
Electric power systems
Electrical loads
Energy storage
Forecasting
Interpreters
Mathematical models
Processor Architectures
Programming Languages
Repair
Sliding
Smart grid
Statistical methods
title Sliding window-based LightGBM model for electric load forecasting using anomaly repair
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliding%20window-based%20LightGBM%20model%20for%20electric%20load%20forecasting%20using%20anomaly%20repair&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Park,%20Sungwoo&rft.date=2021-11-01&rft.volume=77&rft.issue=11&rft.spage=12857&rft.epage=12878&rft.pages=12857-12878&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-021-03787-4&rft_dat=%3Cproquest_cross%3E2585945435%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-8de941df1970518fd8b4ac1a645b81951f52b2c7a310cefaeb193fbbc8a7e373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2585945435&rft_id=info:pmid/&rfr_iscdi=true