Loading…
Sliding window-based LightGBM model for electric load forecasting using anomaly repair
Smart grids have attracted much attention recently for their potential to reduce power system operating and management costs. Smart grid core components include energy storage, renewable energy source(s), and smart meters. Smart meters collect diverse data regarding smart grid operation, which can l...
Saved in:
Published in: | The Journal of supercomputing 2021-11, Vol.77 (11), p.12857-12878 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-8de941df1970518fd8b4ac1a645b81951f52b2c7a310cefaeb193fbbc8a7e373 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-8de941df1970518fd8b4ac1a645b81951f52b2c7a310cefaeb193fbbc8a7e373 |
container_end_page | 12878 |
container_issue | 11 |
container_start_page | 12857 |
container_title | The Journal of supercomputing |
container_volume | 77 |
creator | Park, Sungwoo Jung, Seungmin Jung, Seungwon Rho, Seungmin Hwang, Eenjun |
description | Smart grids have attracted much attention recently for their potential to reduce power system operating and management costs. Smart grid core components include energy storage, renewable energy source(s), and smart meters. Smart meters collect diverse data regarding smart grid operation, which can lead to inefficient operation if the meter data are damaged or tampered with during collection or transmission. Therefore, it is important to identify abnormalities in smart grid data and process them accordingly. Various anomaly detection models have been proposed using statistical methods, but they cannot detect some anomaly patterns accurately, and the models generally did not consider repair strategies for the detected anomalies. Anomaly repair should be included with model training to improve forecasting performance. This paper proposes a robust sliding window-based LightGBM model for short-term load forecasting using anomaly detection and repair. We first show how to detect anomalies using a variational autoencoder and then how they can be repaired using a random forest method. Finally, we verify that the proposed sliding window-based LightGBM achieves superior forecasting performance in combination with anomaly detection and repair. |
doi_str_mv | 10.1007/s11227-021-03787-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2585945435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585945435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8de941df1970518fd8b4ac1a645b81951f52b2c7a310cefaeb193fbbc8a7e373</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC52gmHyZ71KJVqHiweA3ZfNQt201NtpT---66gjcvMzC8z8zwIHQN5BYIkXcZgFKJCQVMmFQS8xM0ASEZJlzxUzQhJSVYCU7P0UXOa0IIZ5JN0OdHU7u6XRX7unVxjyuTvSsW9eqrmz--FZvofFOEmArfeNul2hZNNG6YeGtyN5C7PFTTxo1pDkXyW1OnS3QWTJP91W-fouXz03L2ghfv89fZwwJbBmWHlfMlBxeglESACk5V3Fgw91xUCkoBQdCKWmkYEOuD8RWULFSVVUb6_v8puhnXblP83vnc6XXcpba_qKlQouSCM9Gn6JiyKeacfNDbVG9MOmggetCnR32616d_9GneQ2yEch9uVz79rf6HOgL3gXNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585945435</pqid></control><display><type>article</type><title>Sliding window-based LightGBM model for electric load forecasting using anomaly repair</title><source>Springer Link</source><creator>Park, Sungwoo ; Jung, Seungmin ; Jung, Seungwon ; Rho, Seungmin ; Hwang, Eenjun</creator><creatorcontrib>Park, Sungwoo ; Jung, Seungmin ; Jung, Seungwon ; Rho, Seungmin ; Hwang, Eenjun</creatorcontrib><description>Smart grids have attracted much attention recently for their potential to reduce power system operating and management costs. Smart grid core components include energy storage, renewable energy source(s), and smart meters. Smart meters collect diverse data regarding smart grid operation, which can lead to inefficient operation if the meter data are damaged or tampered with during collection or transmission. Therefore, it is important to identify abnormalities in smart grid data and process them accordingly. Various anomaly detection models have been proposed using statistical methods, but they cannot detect some anomaly patterns accurately, and the models generally did not consider repair strategies for the detected anomalies. Anomaly repair should be included with model training to improve forecasting performance. This paper proposes a robust sliding window-based LightGBM model for short-term load forecasting using anomaly detection and repair. We first show how to detect anomalies using a variational autoencoder and then how they can be repaired using a random forest method. Finally, we verify that the proposed sliding window-based LightGBM achieves superior forecasting performance in combination with anomaly detection and repair.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-021-03787-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abnormalities ; Anomalies ; Artificial Intelligence for Smart Cities ; Compilers ; Computer Science ; Electric power systems ; Electrical loads ; Energy storage ; Forecasting ; Interpreters ; Mathematical models ; Processor Architectures ; Programming Languages ; Repair ; Sliding ; Smart grid ; Statistical methods</subject><ispartof>The Journal of supercomputing, 2021-11, Vol.77 (11), p.12857-12878</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8de941df1970518fd8b4ac1a645b81951f52b2c7a310cefaeb193fbbc8a7e373</citedby><cites>FETCH-LOGICAL-c319t-8de941df1970518fd8b4ac1a645b81951f52b2c7a310cefaeb193fbbc8a7e373</cites><orcidid>0000-0002-0418-4092</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Park, Sungwoo</creatorcontrib><creatorcontrib>Jung, Seungmin</creatorcontrib><creatorcontrib>Jung, Seungwon</creatorcontrib><creatorcontrib>Rho, Seungmin</creatorcontrib><creatorcontrib>Hwang, Eenjun</creatorcontrib><title>Sliding window-based LightGBM model for electric load forecasting using anomaly repair</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Smart grids have attracted much attention recently for their potential to reduce power system operating and management costs. Smart grid core components include energy storage, renewable energy source(s), and smart meters. Smart meters collect diverse data regarding smart grid operation, which can lead to inefficient operation if the meter data are damaged or tampered with during collection or transmission. Therefore, it is important to identify abnormalities in smart grid data and process them accordingly. Various anomaly detection models have been proposed using statistical methods, but they cannot detect some anomaly patterns accurately, and the models generally did not consider repair strategies for the detected anomalies. Anomaly repair should be included with model training to improve forecasting performance. This paper proposes a robust sliding window-based LightGBM model for short-term load forecasting using anomaly detection and repair. We first show how to detect anomalies using a variational autoencoder and then how they can be repaired using a random forest method. Finally, we verify that the proposed sliding window-based LightGBM achieves superior forecasting performance in combination with anomaly detection and repair.</description><subject>Abnormalities</subject><subject>Anomalies</subject><subject>Artificial Intelligence for Smart Cities</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Electric power systems</subject><subject>Electrical loads</subject><subject>Energy storage</subject><subject>Forecasting</subject><subject>Interpreters</subject><subject>Mathematical models</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Repair</subject><subject>Sliding</subject><subject>Smart grid</subject><subject>Statistical methods</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC52gmHyZ71KJVqHiweA3ZfNQt201NtpT---66gjcvMzC8z8zwIHQN5BYIkXcZgFKJCQVMmFQS8xM0ASEZJlzxUzQhJSVYCU7P0UXOa0IIZ5JN0OdHU7u6XRX7unVxjyuTvSsW9eqrmz--FZvofFOEmArfeNul2hZNNG6YeGtyN5C7PFTTxo1pDkXyW1OnS3QWTJP91W-fouXz03L2ghfv89fZwwJbBmWHlfMlBxeglESACk5V3Fgw91xUCkoBQdCKWmkYEOuD8RWULFSVVUb6_v8puhnXblP83vnc6XXcpba_qKlQouSCM9Gn6JiyKeacfNDbVG9MOmggetCnR32616d_9GneQ2yEch9uVz79rf6HOgL3gXNg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Park, Sungwoo</creator><creator>Jung, Seungmin</creator><creator>Jung, Seungwon</creator><creator>Rho, Seungmin</creator><creator>Hwang, Eenjun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0418-4092</orcidid></search><sort><creationdate>20211101</creationdate><title>Sliding window-based LightGBM model for electric load forecasting using anomaly repair</title><author>Park, Sungwoo ; Jung, Seungmin ; Jung, Seungwon ; Rho, Seungmin ; Hwang, Eenjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8de941df1970518fd8b4ac1a645b81951f52b2c7a310cefaeb193fbbc8a7e373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abnormalities</topic><topic>Anomalies</topic><topic>Artificial Intelligence for Smart Cities</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Electric power systems</topic><topic>Electrical loads</topic><topic>Energy storage</topic><topic>Forecasting</topic><topic>Interpreters</topic><topic>Mathematical models</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Repair</topic><topic>Sliding</topic><topic>Smart grid</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Sungwoo</creatorcontrib><creatorcontrib>Jung, Seungmin</creatorcontrib><creatorcontrib>Jung, Seungwon</creatorcontrib><creatorcontrib>Rho, Seungmin</creatorcontrib><creatorcontrib>Hwang, Eenjun</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Sungwoo</au><au>Jung, Seungmin</au><au>Jung, Seungwon</au><au>Rho, Seungmin</au><au>Hwang, Eenjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliding window-based LightGBM model for electric load forecasting using anomaly repair</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>77</volume><issue>11</issue><spage>12857</spage><epage>12878</epage><pages>12857-12878</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Smart grids have attracted much attention recently for their potential to reduce power system operating and management costs. Smart grid core components include energy storage, renewable energy source(s), and smart meters. Smart meters collect diverse data regarding smart grid operation, which can lead to inefficient operation if the meter data are damaged or tampered with during collection or transmission. Therefore, it is important to identify abnormalities in smart grid data and process them accordingly. Various anomaly detection models have been proposed using statistical methods, but they cannot detect some anomaly patterns accurately, and the models generally did not consider repair strategies for the detected anomalies. Anomaly repair should be included with model training to improve forecasting performance. This paper proposes a robust sliding window-based LightGBM model for short-term load forecasting using anomaly detection and repair. We first show how to detect anomalies using a variational autoencoder and then how they can be repaired using a random forest method. Finally, we verify that the proposed sliding window-based LightGBM achieves superior forecasting performance in combination with anomaly detection and repair.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-021-03787-4</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-0418-4092</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2021-11, Vol.77 (11), p.12857-12878 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_2585945435 |
source | Springer Link |
subjects | Abnormalities Anomalies Artificial Intelligence for Smart Cities Compilers Computer Science Electric power systems Electrical loads Energy storage Forecasting Interpreters Mathematical models Processor Architectures Programming Languages Repair Sliding Smart grid Statistical methods |
title | Sliding window-based LightGBM model for electric load forecasting using anomaly repair |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A59%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliding%20window-based%20LightGBM%20model%20for%20electric%20load%20forecasting%20using%20anomaly%20repair&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Park,%20Sungwoo&rft.date=2021-11-01&rft.volume=77&rft.issue=11&rft.spage=12857&rft.epage=12878&rft.pages=12857-12878&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-021-03787-4&rft_dat=%3Cproquest_cross%3E2585945435%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-8de941df1970518fd8b4ac1a645b81951f52b2c7a310cefaeb193fbbc8a7e373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2585945435&rft_id=info:pmid/&rfr_iscdi=true |