Loading…

Uncertainty regions of observables and state-independent uncertainty relations

The optimal state-independent lower bounds for the sum of variances or deviations of observables are of significance for the growing number of experiments that reach the uncertainty limited regime. We present a framework for computing the tight uncertainty relations of variance or deviation via dete...

Full description

Saved in:
Bibliographic Details
Published in:Quantum information processing 2021-11, Vol.20 (11), Article 357
Main Authors: Zhang, Lin, Luo, Shunlong, Fei, Shao-Ming, Wu, Junde
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-29191249b1e4d3aca2bca501894c1037a2b1fff1c7d5d24f1f877c77afc46e113
cites cdi_FETCH-LOGICAL-c319t-29191249b1e4d3aca2bca501894c1037a2b1fff1c7d5d24f1f877c77afc46e113
container_end_page
container_issue 11
container_start_page
container_title Quantum information processing
container_volume 20
creator Zhang, Lin
Luo, Shunlong
Fei, Shao-Ming
Wu, Junde
description The optimal state-independent lower bounds for the sum of variances or deviations of observables are of significance for the growing number of experiments that reach the uncertainty limited regime. We present a framework for computing the tight uncertainty relations of variance or deviation via determining the uncertainty regions, which are formed by the tuples of two or more of quantum observables in random quantum states induced from the uniform Haar measure on the purified states. From the analytical formulae of these uncertainty regions, we present state-independent uncertainty inequalities satisfied by the sum of variances or deviations of two, three and arbitrary many observables, from which experimentally friend entanglement detection criteria are derived for bipartite and tripartite systems.
doi_str_mv 10.1007/s11128-021-03303-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2586507669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586507669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-29191249b1e4d3aca2bca501894c1037a2b1fff1c7d5d24f1f877c77afc46e113</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC52gm2Wx2j1L8gqIXew7Z7KRsqdmapJb-e9OuIF68zAc8zwy8hFwDuwXG1F0EAF5TxoEyIZiguxMyAakEBSH46XFmlCkpz8lFjCuWyaquJuR14S2GZHqf9kXAZT_4WAyuGNqI4cu0a4yF8V0Rk0lIe9_hBnPxqdj-EdcmHdRLcubMOuLVT5-SxePD--yZzt-eXmb3c2oFNInyBhrgZdMClp0w1vDWGsmgbkoLTKi8g3MOrOpkx0sHrlbKKmWcLSsEEFNyM97dhOFzizHp1bANPr_UXNaVZKqqmkzxkbJhiDGg05vQf5iw18D0ITc95qZzGvqYm95lSYxSzLBfYvg9_Y_1DawLchw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586507669</pqid></control><display><type>article</type><title>Uncertainty regions of observables and state-independent uncertainty relations</title><source>Springer Link</source><creator>Zhang, Lin ; Luo, Shunlong ; Fei, Shao-Ming ; Wu, Junde</creator><creatorcontrib>Zhang, Lin ; Luo, Shunlong ; Fei, Shao-Ming ; Wu, Junde</creatorcontrib><description>The optimal state-independent lower bounds for the sum of variances or deviations of observables are of significance for the growing number of experiments that reach the uncertainty limited regime. We present a framework for computing the tight uncertainty relations of variance or deviation via determining the uncertainty regions, which are formed by the tuples of two or more of quantum observables in random quantum states induced from the uniform Haar measure on the purified states. From the analytical formulae of these uncertainty regions, we present state-independent uncertainty inequalities satisfied by the sum of variances or deviations of two, three and arbitrary many observables, from which experimentally friend entanglement detection criteria are derived for bipartite and tripartite systems.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-021-03303-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Data Structures and Information Theory ; Deviation ; Entanglement ; Lower bounds ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Spintronics ; Uncertainty</subject><ispartof>Quantum information processing, 2021-11, Vol.20 (11), Article 357</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-29191249b1e4d3aca2bca501894c1037a2b1fff1c7d5d24f1f877c77afc46e113</citedby><cites>FETCH-LOGICAL-c319t-29191249b1e4d3aca2bca501894c1037a2b1fff1c7d5d24f1f877c77afc46e113</cites><orcidid>0000-0001-6220-4218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Luo, Shunlong</creatorcontrib><creatorcontrib>Fei, Shao-Ming</creatorcontrib><creatorcontrib>Wu, Junde</creatorcontrib><title>Uncertainty regions of observables and state-independent uncertainty relations</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>The optimal state-independent lower bounds for the sum of variances or deviations of observables are of significance for the growing number of experiments that reach the uncertainty limited regime. We present a framework for computing the tight uncertainty relations of variance or deviation via determining the uncertainty regions, which are formed by the tuples of two or more of quantum observables in random quantum states induced from the uniform Haar measure on the purified states. From the analytical formulae of these uncertainty regions, we present state-independent uncertainty inequalities satisfied by the sum of variances or deviations of two, three and arbitrary many observables, from which experimentally friend entanglement detection criteria are derived for bipartite and tripartite systems.</description><subject>Data Structures and Information Theory</subject><subject>Deviation</subject><subject>Entanglement</subject><subject>Lower bounds</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Spintronics</subject><subject>Uncertainty</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC52gm2Wx2j1L8gqIXew7Z7KRsqdmapJb-e9OuIF68zAc8zwy8hFwDuwXG1F0EAF5TxoEyIZiguxMyAakEBSH46XFmlCkpz8lFjCuWyaquJuR14S2GZHqf9kXAZT_4WAyuGNqI4cu0a4yF8V0Rk0lIe9_hBnPxqdj-EdcmHdRLcubMOuLVT5-SxePD--yZzt-eXmb3c2oFNInyBhrgZdMClp0w1vDWGsmgbkoLTKi8g3MOrOpkx0sHrlbKKmWcLSsEEFNyM97dhOFzizHp1bANPr_UXNaVZKqqmkzxkbJhiDGg05vQf5iw18D0ITc95qZzGvqYm95lSYxSzLBfYvg9_Y_1DawLchw</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Zhang, Lin</creator><creator>Luo, Shunlong</creator><creator>Fei, Shao-Ming</creator><creator>Wu, Junde</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6220-4218</orcidid></search><sort><creationdate>20211101</creationdate><title>Uncertainty regions of observables and state-independent uncertainty relations</title><author>Zhang, Lin ; Luo, Shunlong ; Fei, Shao-Ming ; Wu, Junde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-29191249b1e4d3aca2bca501894c1037a2b1fff1c7d5d24f1f877c77afc46e113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data Structures and Information Theory</topic><topic>Deviation</topic><topic>Entanglement</topic><topic>Lower bounds</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Spintronics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Luo, Shunlong</creatorcontrib><creatorcontrib>Fei, Shao-Ming</creatorcontrib><creatorcontrib>Wu, Junde</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lin</au><au>Luo, Shunlong</au><au>Fei, Shao-Ming</au><au>Wu, Junde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty regions of observables and state-independent uncertainty relations</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>20</volume><issue>11</issue><artnum>357</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>The optimal state-independent lower bounds for the sum of variances or deviations of observables are of significance for the growing number of experiments that reach the uncertainty limited regime. We present a framework for computing the tight uncertainty relations of variance or deviation via determining the uncertainty regions, which are formed by the tuples of two or more of quantum observables in random quantum states induced from the uniform Haar measure on the purified states. From the analytical formulae of these uncertainty regions, we present state-independent uncertainty inequalities satisfied by the sum of variances or deviations of two, three and arbitrary many observables, from which experimentally friend entanglement detection criteria are derived for bipartite and tripartite systems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-021-03303-w</doi><orcidid>https://orcid.org/0000-0001-6220-4218</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1570-0755
ispartof Quantum information processing, 2021-11, Vol.20 (11), Article 357
issn 1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_2586507669
source Springer Link
subjects Data Structures and Information Theory
Deviation
Entanglement
Lower bounds
Mathematical Physics
Physics
Physics and Astronomy
Quantum Computing
Quantum Information Technology
Quantum Physics
Spintronics
Uncertainty
title Uncertainty regions of observables and state-independent uncertainty relations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20regions%20of%20observables%20and%20state-independent%20uncertainty%20relations&rft.jtitle=Quantum%20information%20processing&rft.au=Zhang,%20Lin&rft.date=2021-11-01&rft.volume=20&rft.issue=11&rft.artnum=357&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-021-03303-w&rft_dat=%3Cproquest_cross%3E2586507669%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-29191249b1e4d3aca2bca501894c1037a2b1fff1c7d5d24f1f877c77afc46e113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2586507669&rft_id=info:pmid/&rfr_iscdi=true