Loading…
Uncertainty regions of observables and state-independent uncertainty relations
The optimal state-independent lower bounds for the sum of variances or deviations of observables are of significance for the growing number of experiments that reach the uncertainty limited regime. We present a framework for computing the tight uncertainty relations of variance or deviation via dete...
Saved in:
Published in: | Quantum information processing 2021-11, Vol.20 (11), Article 357 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-29191249b1e4d3aca2bca501894c1037a2b1fff1c7d5d24f1f877c77afc46e113 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-29191249b1e4d3aca2bca501894c1037a2b1fff1c7d5d24f1f877c77afc46e113 |
container_end_page | |
container_issue | 11 |
container_start_page | |
container_title | Quantum information processing |
container_volume | 20 |
creator | Zhang, Lin Luo, Shunlong Fei, Shao-Ming Wu, Junde |
description | The optimal state-independent lower bounds for the sum of variances or deviations of observables are of significance for the growing number of experiments that reach the uncertainty limited regime. We present a framework for computing the tight uncertainty relations of variance or deviation via determining the uncertainty regions, which are formed by the tuples of two or more of quantum observables in random quantum states induced from the uniform Haar measure on the purified states. From the analytical formulae of these uncertainty regions, we present state-independent uncertainty inequalities satisfied by the sum of variances or deviations of two, three and arbitrary many observables, from which experimentally friend entanglement detection criteria are derived for bipartite and tripartite systems. |
doi_str_mv | 10.1007/s11128-021-03303-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2586507669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586507669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-29191249b1e4d3aca2bca501894c1037a2b1fff1c7d5d24f1f877c77afc46e113</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC52gm2Wx2j1L8gqIXew7Z7KRsqdmapJb-e9OuIF68zAc8zwy8hFwDuwXG1F0EAF5TxoEyIZiguxMyAakEBSH46XFmlCkpz8lFjCuWyaquJuR14S2GZHqf9kXAZT_4WAyuGNqI4cu0a4yF8V0Rk0lIe9_hBnPxqdj-EdcmHdRLcubMOuLVT5-SxePD--yZzt-eXmb3c2oFNInyBhrgZdMClp0w1vDWGsmgbkoLTKi8g3MOrOpkx0sHrlbKKmWcLSsEEFNyM97dhOFzizHp1bANPr_UXNaVZKqqmkzxkbJhiDGg05vQf5iw18D0ITc95qZzGvqYm95lSYxSzLBfYvg9_Y_1DawLchw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586507669</pqid></control><display><type>article</type><title>Uncertainty regions of observables and state-independent uncertainty relations</title><source>Springer Link</source><creator>Zhang, Lin ; Luo, Shunlong ; Fei, Shao-Ming ; Wu, Junde</creator><creatorcontrib>Zhang, Lin ; Luo, Shunlong ; Fei, Shao-Ming ; Wu, Junde</creatorcontrib><description>The optimal state-independent lower bounds for the sum of variances or deviations of observables are of significance for the growing number of experiments that reach the uncertainty limited regime. We present a framework for computing the tight uncertainty relations of variance or deviation via determining the uncertainty regions, which are formed by the tuples of two or more of quantum observables in random quantum states induced from the uniform Haar measure on the purified states. From the analytical formulae of these uncertainty regions, we present state-independent uncertainty inequalities satisfied by the sum of variances or deviations of two, three and arbitrary many observables, from which experimentally friend entanglement detection criteria are derived for bipartite and tripartite systems.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-021-03303-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Data Structures and Information Theory ; Deviation ; Entanglement ; Lower bounds ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Spintronics ; Uncertainty</subject><ispartof>Quantum information processing, 2021-11, Vol.20 (11), Article 357</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-29191249b1e4d3aca2bca501894c1037a2b1fff1c7d5d24f1f877c77afc46e113</citedby><cites>FETCH-LOGICAL-c319t-29191249b1e4d3aca2bca501894c1037a2b1fff1c7d5d24f1f877c77afc46e113</cites><orcidid>0000-0001-6220-4218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Luo, Shunlong</creatorcontrib><creatorcontrib>Fei, Shao-Ming</creatorcontrib><creatorcontrib>Wu, Junde</creatorcontrib><title>Uncertainty regions of observables and state-independent uncertainty relations</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>The optimal state-independent lower bounds for the sum of variances or deviations of observables are of significance for the growing number of experiments that reach the uncertainty limited regime. We present a framework for computing the tight uncertainty relations of variance or deviation via determining the uncertainty regions, which are formed by the tuples of two or more of quantum observables in random quantum states induced from the uniform Haar measure on the purified states. From the analytical formulae of these uncertainty regions, we present state-independent uncertainty inequalities satisfied by the sum of variances or deviations of two, three and arbitrary many observables, from which experimentally friend entanglement detection criteria are derived for bipartite and tripartite systems.</description><subject>Data Structures and Information Theory</subject><subject>Deviation</subject><subject>Entanglement</subject><subject>Lower bounds</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Spintronics</subject><subject>Uncertainty</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOC52gm2Wx2j1L8gqIXew7Z7KRsqdmapJb-e9OuIF68zAc8zwy8hFwDuwXG1F0EAF5TxoEyIZiguxMyAakEBSH46XFmlCkpz8lFjCuWyaquJuR14S2GZHqf9kXAZT_4WAyuGNqI4cu0a4yF8V0Rk0lIe9_hBnPxqdj-EdcmHdRLcubMOuLVT5-SxePD--yZzt-eXmb3c2oFNInyBhrgZdMClp0w1vDWGsmgbkoLTKi8g3MOrOpkx0sHrlbKKmWcLSsEEFNyM97dhOFzizHp1bANPr_UXNaVZKqqmkzxkbJhiDGg05vQf5iw18D0ITc95qZzGvqYm95lSYxSzLBfYvg9_Y_1DawLchw</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Zhang, Lin</creator><creator>Luo, Shunlong</creator><creator>Fei, Shao-Ming</creator><creator>Wu, Junde</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6220-4218</orcidid></search><sort><creationdate>20211101</creationdate><title>Uncertainty regions of observables and state-independent uncertainty relations</title><author>Zhang, Lin ; Luo, Shunlong ; Fei, Shao-Ming ; Wu, Junde</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-29191249b1e4d3aca2bca501894c1037a2b1fff1c7d5d24f1f877c77afc46e113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data Structures and Information Theory</topic><topic>Deviation</topic><topic>Entanglement</topic><topic>Lower bounds</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Spintronics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Luo, Shunlong</creatorcontrib><creatorcontrib>Fei, Shao-Ming</creatorcontrib><creatorcontrib>Wu, Junde</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lin</au><au>Luo, Shunlong</au><au>Fei, Shao-Ming</au><au>Wu, Junde</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty regions of observables and state-independent uncertainty relations</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>20</volume><issue>11</issue><artnum>357</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>The optimal state-independent lower bounds for the sum of variances or deviations of observables are of significance for the growing number of experiments that reach the uncertainty limited regime. We present a framework for computing the tight uncertainty relations of variance or deviation via determining the uncertainty regions, which are formed by the tuples of two or more of quantum observables in random quantum states induced from the uniform Haar measure on the purified states. From the analytical formulae of these uncertainty regions, we present state-independent uncertainty inequalities satisfied by the sum of variances or deviations of two, three and arbitrary many observables, from which experimentally friend entanglement detection criteria are derived for bipartite and tripartite systems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-021-03303-w</doi><orcidid>https://orcid.org/0000-0001-6220-4218</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-0755 |
ispartof | Quantum information processing, 2021-11, Vol.20 (11), Article 357 |
issn | 1570-0755 1573-1332 |
language | eng |
recordid | cdi_proquest_journals_2586507669 |
source | Springer Link |
subjects | Data Structures and Information Theory Deviation Entanglement Lower bounds Mathematical Physics Physics Physics and Astronomy Quantum Computing Quantum Information Technology Quantum Physics Spintronics Uncertainty |
title | Uncertainty regions of observables and state-independent uncertainty relations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20regions%20of%20observables%20and%20state-independent%20uncertainty%20relations&rft.jtitle=Quantum%20information%20processing&rft.au=Zhang,%20Lin&rft.date=2021-11-01&rft.volume=20&rft.issue=11&rft.artnum=357&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-021-03303-w&rft_dat=%3Cproquest_cross%3E2586507669%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-29191249b1e4d3aca2bca501894c1037a2b1fff1c7d5d24f1f877c77afc46e113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2586507669&rft_id=info:pmid/&rfr_iscdi=true |