Loading…

Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing

Model averaging has been demonstrated as a powerful tool in statistical prediction over the past decade. However, a majority of related works focus on the parametric model averaging. In this paper, we propose a model averaging estimation under nonparametric varying-coefficient models. Differing from...

Full description

Saved in:
Bibliographic Details
Published in:Statistical papers (Berlin, Germany) Germany), 2021-12, Vol.62 (6), p.2885-2905
Main Author: Xia, Xiaochao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-5fbb5387bfe4a631200acd7708cc4e580d6fe250149c86a293a0910c3db685f83
cites cdi_FETCH-LOGICAL-c352t-5fbb5387bfe4a631200acd7708cc4e580d6fe250149c86a293a0910c3db685f83
container_end_page 2905
container_issue 6
container_start_page 2885
container_title Statistical papers (Berlin, Germany)
container_volume 62
creator Xia, Xiaochao
description Model averaging has been demonstrated as a powerful tool in statistical prediction over the past decade. However, a majority of related works focus on the parametric model averaging. In this paper, we propose a model averaging estimation under nonparametric varying-coefficient models. Differing from existing works, our proposal concentrates on the development of the B-spline approximation to nonparametric varying coefficient functions for model average estimator, rendering the computational burden more cheaply than the kernel smoothing based estimator. Furthermore, our procedure is asymptotically optimal under mild conditions. The asymptotic optimality established in current paper is in terms of conditional quadratic loss function when the variance of model error is known or unknown, respectively. Three different cases of candidate models are considered. Extensive simulations are carried out to evaluate the finite-sample performance of our estimator. A real data is analyzed for illustration as well.
doi_str_mv 10.1007/s00362-020-01218-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2586657535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586657535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-5fbb5387bfe4a631200acd7708cc4e580d6fe250149c86a293a0910c3db685f83</originalsourceid><addsrcrecordid>eNp9kE1PAyEURYnRxFr9A65IXKMPKAyz1MavpMaNrgnDQEvTgRGmNf57p9bEnau3OffevIPQJYVrClDdFAAuGQEGBCijitRHaEIl5aSuanWMJlBzRgQweYrOSlkDUKUUTJB-Sa3bYLNz2SxDXOI-uzbYIaSIfco4ptibbDo35GDxzuSvESI2Oe-DDS4OuNsXFPwZhhW-I6XfhOhw6VIaViN6jk682RR38Xun6P3h_m3-RBavj8_z2wWxXLCBCN80gquq8W5mJKcMwNi2qkBZO3NCQSu9YwLorLZKGlZzAzUFy9tGKuEVn6KrQ2-f08fWlUGv0zbHcVIzoaQUleBipNiBsjmVkp3XfQ7d-JSmoPci9UGkHkXqH5G6HkP8ECojHJcu_1X_k_oGHVd3Kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586657535</pqid></control><display><type>article</type><title>Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing</title><source>Business Source Ultimate</source><source>ABI/INFORM global</source><source>EBSCOhost Econlit with Full Text</source><source>Springer Nature</source><creator>Xia, Xiaochao</creator><creatorcontrib>Xia, Xiaochao</creatorcontrib><description>Model averaging has been demonstrated as a powerful tool in statistical prediction over the past decade. However, a majority of related works focus on the parametric model averaging. In this paper, we propose a model averaging estimation under nonparametric varying-coefficient models. Differing from existing works, our proposal concentrates on the development of the B-spline approximation to nonparametric varying coefficient functions for model average estimator, rendering the computational burden more cheaply than the kernel smoothing based estimator. Furthermore, our procedure is asymptotically optimal under mild conditions. The asymptotic optimality established in current paper is in terms of conditional quadratic loss function when the variance of model error is known or unknown, respectively. Three different cases of candidate models are considered. Extensive simulations are carried out to evaluate the finite-sample performance of our estimator. A real data is analyzed for illustration as well.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-020-01218-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Asymptotic methods ; Asymptotic properties ; Coefficients ; Data analysis ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Finance ; Insurance ; Management ; Mathematics and Statistics ; Nonparametric statistics ; Operations Research/Decision Theory ; Optimization ; Probability Theory and Stochastic Processes ; Regular Article ; Regularization methods ; Smoothing ; Statistics ; Statistics for Business</subject><ispartof>Statistical papers (Berlin, Germany), 2021-12, Vol.62 (6), p.2885-2905</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-5fbb5387bfe4a631200acd7708cc4e580d6fe250149c86a293a0910c3db685f83</citedby><cites>FETCH-LOGICAL-c352t-5fbb5387bfe4a631200acd7708cc4e580d6fe250149c86a293a0910c3db685f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2586657535/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2586657535?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339,74638</link.rule.ids></links><search><creatorcontrib>Xia, Xiaochao</creatorcontrib><title>Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing</title><title>Statistical papers (Berlin, Germany)</title><addtitle>Stat Papers</addtitle><description>Model averaging has been demonstrated as a powerful tool in statistical prediction over the past decade. However, a majority of related works focus on the parametric model averaging. In this paper, we propose a model averaging estimation under nonparametric varying-coefficient models. Differing from existing works, our proposal concentrates on the development of the B-spline approximation to nonparametric varying coefficient functions for model average estimator, rendering the computational burden more cheaply than the kernel smoothing based estimator. Furthermore, our procedure is asymptotically optimal under mild conditions. The asymptotic optimality established in current paper is in terms of conditional quadratic loss function when the variance of model error is known or unknown, respectively. Three different cases of candidate models are considered. Extensive simulations are carried out to evaluate the finite-sample performance of our estimator. A real data is analyzed for illustration as well.</description><subject>Approximation</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Coefficients</subject><subject>Data analysis</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Nonparametric statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regular Article</subject><subject>Regularization methods</subject><subject>Smoothing</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kE1PAyEURYnRxFr9A65IXKMPKAyz1MavpMaNrgnDQEvTgRGmNf57p9bEnau3OffevIPQJYVrClDdFAAuGQEGBCijitRHaEIl5aSuanWMJlBzRgQweYrOSlkDUKUUTJB-Sa3bYLNz2SxDXOI-uzbYIaSIfco4ptibbDo35GDxzuSvESI2Oe-DDS4OuNsXFPwZhhW-I6XfhOhw6VIaViN6jk682RR38Xun6P3h_m3-RBavj8_z2wWxXLCBCN80gquq8W5mJKcMwNi2qkBZO3NCQSu9YwLorLZKGlZzAzUFy9tGKuEVn6KrQ2-f08fWlUGv0zbHcVIzoaQUleBipNiBsjmVkp3XfQ7d-JSmoPci9UGkHkXqH5G6HkP8ECojHJcu_1X_k_oGHVd3Kw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Xia, Xiaochao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20211201</creationdate><title>Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing</title><author>Xia, Xiaochao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-5fbb5387bfe4a631200acd7708cc4e580d6fe250149c86a293a0910c3db685f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Coefficients</topic><topic>Data analysis</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Nonparametric statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regular Article</topic><topic>Regularization methods</topic><topic>Smoothing</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Xiaochao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Xiaochao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><stitle>Stat Papers</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>62</volume><issue>6</issue><spage>2885</spage><epage>2905</epage><pages>2885-2905</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>Model averaging has been demonstrated as a powerful tool in statistical prediction over the past decade. However, a majority of related works focus on the parametric model averaging. In this paper, we propose a model averaging estimation under nonparametric varying-coefficient models. Differing from existing works, our proposal concentrates on the development of the B-spline approximation to nonparametric varying coefficient functions for model average estimator, rendering the computational burden more cheaply than the kernel smoothing based estimator. Furthermore, our procedure is asymptotically optimal under mild conditions. The asymptotic optimality established in current paper is in terms of conditional quadratic loss function when the variance of model error is known or unknown, respectively. Three different cases of candidate models are considered. Extensive simulations are carried out to evaluate the finite-sample performance of our estimator. A real data is analyzed for illustration as well.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00362-020-01218-9</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0932-5026
ispartof Statistical papers (Berlin, Germany), 2021-12, Vol.62 (6), p.2885-2905
issn 0932-5026
1613-9798
language eng
recordid cdi_proquest_journals_2586657535
source Business Source Ultimate; ABI/INFORM global; EBSCOhost Econlit with Full Text; Springer Nature
subjects Approximation
Asymptotic methods
Asymptotic properties
Coefficients
Data analysis
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Finance
Insurance
Management
Mathematics and Statistics
Nonparametric statistics
Operations Research/Decision Theory
Optimization
Probability Theory and Stochastic Processes
Regular Article
Regularization methods
Smoothing
Statistics
Statistics for Business
title Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20averaging%20prediction%20for%20nonparametric%20varying-coefficient%20models%20with%20B-spline%20smoothing&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Xia,%20Xiaochao&rft.date=2021-12-01&rft.volume=62&rft.issue=6&rft.spage=2885&rft.epage=2905&rft.pages=2885-2905&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-020-01218-9&rft_dat=%3Cproquest_cross%3E2586657535%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-5fbb5387bfe4a631200acd7708cc4e580d6fe250149c86a293a0910c3db685f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2586657535&rft_id=info:pmid/&rfr_iscdi=true