Loading…
Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing
Model averaging has been demonstrated as a powerful tool in statistical prediction over the past decade. However, a majority of related works focus on the parametric model averaging. In this paper, we propose a model averaging estimation under nonparametric varying-coefficient models. Differing from...
Saved in:
Published in: | Statistical papers (Berlin, Germany) Germany), 2021-12, Vol.62 (6), p.2885-2905 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-5fbb5387bfe4a631200acd7708cc4e580d6fe250149c86a293a0910c3db685f83 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-5fbb5387bfe4a631200acd7708cc4e580d6fe250149c86a293a0910c3db685f83 |
container_end_page | 2905 |
container_issue | 6 |
container_start_page | 2885 |
container_title | Statistical papers (Berlin, Germany) |
container_volume | 62 |
creator | Xia, Xiaochao |
description | Model averaging has been demonstrated as a powerful tool in statistical prediction over the past decade. However, a majority of related works focus on the parametric model averaging. In this paper, we propose a model averaging estimation under nonparametric varying-coefficient models. Differing from existing works, our proposal concentrates on the development of the B-spline approximation to nonparametric varying coefficient functions for model average estimator, rendering the computational burden more cheaply than the kernel smoothing based estimator. Furthermore, our procedure is asymptotically optimal under mild conditions. The asymptotic optimality established in current paper is in terms of conditional quadratic loss function when the variance of model error is known or unknown, respectively. Three different cases of candidate models are considered. Extensive simulations are carried out to evaluate the finite-sample performance of our estimator. A real data is analyzed for illustration as well. |
doi_str_mv | 10.1007/s00362-020-01218-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2586657535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586657535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-5fbb5387bfe4a631200acd7708cc4e580d6fe250149c86a293a0910c3db685f83</originalsourceid><addsrcrecordid>eNp9kE1PAyEURYnRxFr9A65IXKMPKAyz1MavpMaNrgnDQEvTgRGmNf57p9bEnau3OffevIPQJYVrClDdFAAuGQEGBCijitRHaEIl5aSuanWMJlBzRgQweYrOSlkDUKUUTJB-Sa3bYLNz2SxDXOI-uzbYIaSIfco4ptibbDo35GDxzuSvESI2Oe-DDS4OuNsXFPwZhhW-I6XfhOhw6VIaViN6jk682RR38Xun6P3h_m3-RBavj8_z2wWxXLCBCN80gquq8W5mJKcMwNi2qkBZO3NCQSu9YwLorLZKGlZzAzUFy9tGKuEVn6KrQ2-f08fWlUGv0zbHcVIzoaQUleBipNiBsjmVkp3XfQ7d-JSmoPci9UGkHkXqH5G6HkP8ECojHJcu_1X_k_oGHVd3Kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586657535</pqid></control><display><type>article</type><title>Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing</title><source>Business Source Ultimate</source><source>ABI/INFORM global</source><source>EBSCOhost Econlit with Full Text</source><source>Springer Nature</source><creator>Xia, Xiaochao</creator><creatorcontrib>Xia, Xiaochao</creatorcontrib><description>Model averaging has been demonstrated as a powerful tool in statistical prediction over the past decade. However, a majority of related works focus on the parametric model averaging. In this paper, we propose a model averaging estimation under nonparametric varying-coefficient models. Differing from existing works, our proposal concentrates on the development of the B-spline approximation to nonparametric varying coefficient functions for model average estimator, rendering the computational burden more cheaply than the kernel smoothing based estimator. Furthermore, our procedure is asymptotically optimal under mild conditions. The asymptotic optimality established in current paper is in terms of conditional quadratic loss function when the variance of model error is known or unknown, respectively. Three different cases of candidate models are considered. Extensive simulations are carried out to evaluate the finite-sample performance of our estimator. A real data is analyzed for illustration as well.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-020-01218-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Asymptotic methods ; Asymptotic properties ; Coefficients ; Data analysis ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Finance ; Insurance ; Management ; Mathematics and Statistics ; Nonparametric statistics ; Operations Research/Decision Theory ; Optimization ; Probability Theory and Stochastic Processes ; Regular Article ; Regularization methods ; Smoothing ; Statistics ; Statistics for Business</subject><ispartof>Statistical papers (Berlin, Germany), 2021-12, Vol.62 (6), p.2885-2905</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-5fbb5387bfe4a631200acd7708cc4e580d6fe250149c86a293a0910c3db685f83</citedby><cites>FETCH-LOGICAL-c352t-5fbb5387bfe4a631200acd7708cc4e580d6fe250149c86a293a0910c3db685f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2586657535/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2586657535?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339,74638</link.rule.ids></links><search><creatorcontrib>Xia, Xiaochao</creatorcontrib><title>Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing</title><title>Statistical papers (Berlin, Germany)</title><addtitle>Stat Papers</addtitle><description>Model averaging has been demonstrated as a powerful tool in statistical prediction over the past decade. However, a majority of related works focus on the parametric model averaging. In this paper, we propose a model averaging estimation under nonparametric varying-coefficient models. Differing from existing works, our proposal concentrates on the development of the B-spline approximation to nonparametric varying coefficient functions for model average estimator, rendering the computational burden more cheaply than the kernel smoothing based estimator. Furthermore, our procedure is asymptotically optimal under mild conditions. The asymptotic optimality established in current paper is in terms of conditional quadratic loss function when the variance of model error is known or unknown, respectively. Three different cases of candidate models are considered. Extensive simulations are carried out to evaluate the finite-sample performance of our estimator. A real data is analyzed for illustration as well.</description><subject>Approximation</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Coefficients</subject><subject>Data analysis</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Nonparametric statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regular Article</subject><subject>Regularization methods</subject><subject>Smoothing</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kE1PAyEURYnRxFr9A65IXKMPKAyz1MavpMaNrgnDQEvTgRGmNf57p9bEnau3OffevIPQJYVrClDdFAAuGQEGBCijitRHaEIl5aSuanWMJlBzRgQweYrOSlkDUKUUTJB-Sa3bYLNz2SxDXOI-uzbYIaSIfco4ptibbDo35GDxzuSvESI2Oe-DDS4OuNsXFPwZhhW-I6XfhOhw6VIaViN6jk682RR38Xun6P3h_m3-RBavj8_z2wWxXLCBCN80gquq8W5mJKcMwNi2qkBZO3NCQSu9YwLorLZKGlZzAzUFy9tGKuEVn6KrQ2-f08fWlUGv0zbHcVIzoaQUleBipNiBsjmVkp3XfQ7d-JSmoPci9UGkHkXqH5G6HkP8ECojHJcu_1X_k_oGHVd3Kw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Xia, Xiaochao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20211201</creationdate><title>Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing</title><author>Xia, Xiaochao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-5fbb5387bfe4a631200acd7708cc4e580d6fe250149c86a293a0910c3db685f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Coefficients</topic><topic>Data analysis</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Nonparametric statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regular Article</topic><topic>Regularization methods</topic><topic>Smoothing</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Xiaochao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Xiaochao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><stitle>Stat Papers</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>62</volume><issue>6</issue><spage>2885</spage><epage>2905</epage><pages>2885-2905</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>Model averaging has been demonstrated as a powerful tool in statistical prediction over the past decade. However, a majority of related works focus on the parametric model averaging. In this paper, we propose a model averaging estimation under nonparametric varying-coefficient models. Differing from existing works, our proposal concentrates on the development of the B-spline approximation to nonparametric varying coefficient functions for model average estimator, rendering the computational burden more cheaply than the kernel smoothing based estimator. Furthermore, our procedure is asymptotically optimal under mild conditions. The asymptotic optimality established in current paper is in terms of conditional quadratic loss function when the variance of model error is known or unknown, respectively. Three different cases of candidate models are considered. Extensive simulations are carried out to evaluate the finite-sample performance of our estimator. A real data is analyzed for illustration as well.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00362-020-01218-9</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-5026 |
ispartof | Statistical papers (Berlin, Germany), 2021-12, Vol.62 (6), p.2885-2905 |
issn | 0932-5026 1613-9798 |
language | eng |
recordid | cdi_proquest_journals_2586657535 |
source | Business Source Ultimate; ABI/INFORM global; EBSCOhost Econlit with Full Text; Springer Nature |
subjects | Approximation Asymptotic methods Asymptotic properties Coefficients Data analysis Economic Theory/Quantitative Economics/Mathematical Methods Economics Finance Insurance Management Mathematics and Statistics Nonparametric statistics Operations Research/Decision Theory Optimization Probability Theory and Stochastic Processes Regular Article Regularization methods Smoothing Statistics Statistics for Business |
title | Model averaging prediction for nonparametric varying-coefficient models with B-spline smoothing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20averaging%20prediction%20for%20nonparametric%20varying-coefficient%20models%20with%20B-spline%20smoothing&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Xia,%20Xiaochao&rft.date=2021-12-01&rft.volume=62&rft.issue=6&rft.spage=2885&rft.epage=2905&rft.pages=2885-2905&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-020-01218-9&rft_dat=%3Cproquest_cross%3E2586657535%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-5fbb5387bfe4a631200acd7708cc4e580d6fe250149c86a293a0910c3db685f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2586657535&rft_id=info:pmid/&rfr_iscdi=true |