Loading…
Let's Wait Awhile: How Temporal Workload Shifting Can Reduce Carbon Emissions in the Cloud
Depending on energy sources and demand, the carbon intensity of the public power grid fluctuates over time. Exploiting this variability is an important factor in reducing the emissions caused by data centers. However, regional differences in the availability of low-carbon energy sources make it hard...
Saved in:
Published in: | arXiv.org 2021-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wiesner, Philipp Behnke, Ilja Scheinert, Dominik Gontarska, Kordian Thamsen, Lauritz |
description | Depending on energy sources and demand, the carbon intensity of the public power grid fluctuates over time. Exploiting this variability is an important factor in reducing the emissions caused by data centers. However, regional differences in the availability of low-carbon energy sources make it hard to provide general best practices for when to consume electricity. Moreover, existing research in this domain focuses mostly on carbon-aware workload migration across geo-distributed data centers, or addresses demand response purely from the perspective of power grid stability and costs. In this paper, we examine the potential impact of shifting computational workloads towards times where the energy supply is expected to be less carbon-intensive. To this end, we identify characteristics of delay-tolerant workloads and analyze the potential for temporal workload shifting in Germany, Great Britain, France, and California over the year 2020. Furthermore, we experimentally evaluate two workload shifting scenarios in a simulation to investigate the influence of time constraints, scheduling strategies, and the accuracy of carbon intensity forecasts. To accelerate research in the domain of carbon-aware computing and to support the evaluation of novel scheduling algorithms, our simulation framework and datasets are publicly available. |
doi_str_mv | 10.48550/arxiv.2110.13234 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2586673616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586673616</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-ae9a9c7a7cad32f3161197100c986be6e2f8ee4288a1d0d56b124b402136c41e3</originalsourceid><addsrcrecordid>eNotjc1Kw0AURgdBsNQ-gLsBF65S5975ycRdKdUKBUEDBTdlktzYqWmmZhLr4xvQ1fk4i-8wdgNirqzW4t51P_57jjAKkCjVBZuglJBYhXjFZjEehBBoUtRaTtj7hvq7yLfO93xx3vuGHvg6nHlOx1PoXMO3oftsgqv4297XvW8_-NK1_JWqoaRxdkVo-eroY_Shjdy3vN-PvglDdc0ua9dEmv1zyvLHVb5cJ5uXp-flYpM4jSZxlLmsTF1aukpiLcEAZCkIUWbWFGQIa0uk0FoHlai0KQBVoQSCNKUCklN2-3d76sLXQLHfHcLQtWNxh9oak0oDRv4ClxpSbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586673616</pqid></control><display><type>article</type><title>Let's Wait Awhile: How Temporal Workload Shifting Can Reduce Carbon Emissions in the Cloud</title><source>Publicly Available Content Database</source><creator>Wiesner, Philipp ; Behnke, Ilja ; Scheinert, Dominik ; Gontarska, Kordian ; Thamsen, Lauritz</creator><creatorcontrib>Wiesner, Philipp ; Behnke, Ilja ; Scheinert, Dominik ; Gontarska, Kordian ; Thamsen, Lauritz</creatorcontrib><description>Depending on energy sources and demand, the carbon intensity of the public power grid fluctuates over time. Exploiting this variability is an important factor in reducing the emissions caused by data centers. However, regional differences in the availability of low-carbon energy sources make it hard to provide general best practices for when to consume electricity. Moreover, existing research in this domain focuses mostly on carbon-aware workload migration across geo-distributed data centers, or addresses demand response purely from the perspective of power grid stability and costs. In this paper, we examine the potential impact of shifting computational workloads towards times where the energy supply is expected to be less carbon-intensive. To this end, we identify characteristics of delay-tolerant workloads and analyze the potential for temporal workload shifting in Germany, Great Britain, France, and California over the year 2020. Furthermore, we experimentally evaluate two workload shifting scenarios in a simulation to investigate the influence of time constraints, scheduling strategies, and the accuracy of carbon intensity forecasts. To accelerate research in the domain of carbon-aware computing and to support the evaluation of novel scheduling algorithms, our simulation framework and datasets are publicly available.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2110.13234</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Best practice ; Carbon ; Clean energy ; Computer centers ; Data centers ; Domains ; Electric power demand ; Electric power grids ; Electricity distribution ; Energy management ; Energy resources ; Energy sources ; Evaluation ; Scheduling ; Workload ; Workloads</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2586673616?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Wiesner, Philipp</creatorcontrib><creatorcontrib>Behnke, Ilja</creatorcontrib><creatorcontrib>Scheinert, Dominik</creatorcontrib><creatorcontrib>Gontarska, Kordian</creatorcontrib><creatorcontrib>Thamsen, Lauritz</creatorcontrib><title>Let's Wait Awhile: How Temporal Workload Shifting Can Reduce Carbon Emissions in the Cloud</title><title>arXiv.org</title><description>Depending on energy sources and demand, the carbon intensity of the public power grid fluctuates over time. Exploiting this variability is an important factor in reducing the emissions caused by data centers. However, regional differences in the availability of low-carbon energy sources make it hard to provide general best practices for when to consume electricity. Moreover, existing research in this domain focuses mostly on carbon-aware workload migration across geo-distributed data centers, or addresses demand response purely from the perspective of power grid stability and costs. In this paper, we examine the potential impact of shifting computational workloads towards times where the energy supply is expected to be less carbon-intensive. To this end, we identify characteristics of delay-tolerant workloads and analyze the potential for temporal workload shifting in Germany, Great Britain, France, and California over the year 2020. Furthermore, we experimentally evaluate two workload shifting scenarios in a simulation to investigate the influence of time constraints, scheduling strategies, and the accuracy of carbon intensity forecasts. To accelerate research in the domain of carbon-aware computing and to support the evaluation of novel scheduling algorithms, our simulation framework and datasets are publicly available.</description><subject>Algorithms</subject><subject>Best practice</subject><subject>Carbon</subject><subject>Clean energy</subject><subject>Computer centers</subject><subject>Data centers</subject><subject>Domains</subject><subject>Electric power demand</subject><subject>Electric power grids</subject><subject>Electricity distribution</subject><subject>Energy management</subject><subject>Energy resources</subject><subject>Energy sources</subject><subject>Evaluation</subject><subject>Scheduling</subject><subject>Workload</subject><subject>Workloads</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc1Kw0AURgdBsNQ-gLsBF65S5975ycRdKdUKBUEDBTdlktzYqWmmZhLr4xvQ1fk4i-8wdgNirqzW4t51P_57jjAKkCjVBZuglJBYhXjFZjEehBBoUtRaTtj7hvq7yLfO93xx3vuGHvg6nHlOx1PoXMO3oftsgqv4297XvW8_-NK1_JWqoaRxdkVo-eroY_Shjdy3vN-PvglDdc0ua9dEmv1zyvLHVb5cJ5uXp-flYpM4jSZxlLmsTF1aukpiLcEAZCkIUWbWFGQIa0uk0FoHlai0KQBVoQSCNKUCklN2-3d76sLXQLHfHcLQtWNxh9oak0oDRv4ClxpSbw</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Wiesner, Philipp</creator><creator>Behnke, Ilja</creator><creator>Scheinert, Dominik</creator><creator>Gontarska, Kordian</creator><creator>Thamsen, Lauritz</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211025</creationdate><title>Let's Wait Awhile: How Temporal Workload Shifting Can Reduce Carbon Emissions in the Cloud</title><author>Wiesner, Philipp ; Behnke, Ilja ; Scheinert, Dominik ; Gontarska, Kordian ; Thamsen, Lauritz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-ae9a9c7a7cad32f3161197100c986be6e2f8ee4288a1d0d56b124b402136c41e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Best practice</topic><topic>Carbon</topic><topic>Clean energy</topic><topic>Computer centers</topic><topic>Data centers</topic><topic>Domains</topic><topic>Electric power demand</topic><topic>Electric power grids</topic><topic>Electricity distribution</topic><topic>Energy management</topic><topic>Energy resources</topic><topic>Energy sources</topic><topic>Evaluation</topic><topic>Scheduling</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>online_resources</toplevel><creatorcontrib>Wiesner, Philipp</creatorcontrib><creatorcontrib>Behnke, Ilja</creatorcontrib><creatorcontrib>Scheinert, Dominik</creatorcontrib><creatorcontrib>Gontarska, Kordian</creatorcontrib><creatorcontrib>Thamsen, Lauritz</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiesner, Philipp</au><au>Behnke, Ilja</au><au>Scheinert, Dominik</au><au>Gontarska, Kordian</au><au>Thamsen, Lauritz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Let's Wait Awhile: How Temporal Workload Shifting Can Reduce Carbon Emissions in the Cloud</atitle><jtitle>arXiv.org</jtitle><date>2021-10-25</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Depending on energy sources and demand, the carbon intensity of the public power grid fluctuates over time. Exploiting this variability is an important factor in reducing the emissions caused by data centers. However, regional differences in the availability of low-carbon energy sources make it hard to provide general best practices for when to consume electricity. Moreover, existing research in this domain focuses mostly on carbon-aware workload migration across geo-distributed data centers, or addresses demand response purely from the perspective of power grid stability and costs. In this paper, we examine the potential impact of shifting computational workloads towards times where the energy supply is expected to be less carbon-intensive. To this end, we identify characteristics of delay-tolerant workloads and analyze the potential for temporal workload shifting in Germany, Great Britain, France, and California over the year 2020. Furthermore, we experimentally evaluate two workload shifting scenarios in a simulation to investigate the influence of time constraints, scheduling strategies, and the accuracy of carbon intensity forecasts. To accelerate research in the domain of carbon-aware computing and to support the evaluation of novel scheduling algorithms, our simulation framework and datasets are publicly available.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2110.13234</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2586673616 |
source | Publicly Available Content Database |
subjects | Algorithms Best practice Carbon Clean energy Computer centers Data centers Domains Electric power demand Electric power grids Electricity distribution Energy management Energy resources Energy sources Evaluation Scheduling Workload Workloads |
title | Let's Wait Awhile: How Temporal Workload Shifting Can Reduce Carbon Emissions in the Cloud |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A51%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Let's%20Wait%20Awhile:%20How%20Temporal%20Workload%20Shifting%20Can%20Reduce%20Carbon%20Emissions%20in%20the%20Cloud&rft.jtitle=arXiv.org&rft.au=Wiesner,%20Philipp&rft.date=2021-10-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2110.13234&rft_dat=%3Cproquest%3E2586673616%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-ae9a9c7a7cad32f3161197100c986be6e2f8ee4288a1d0d56b124b402136c41e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2586673616&rft_id=info:pmid/&rfr_iscdi=true |