Loading…

Hierarchical Domain-Adapted Feature Learning for Video Saliency Prediction

In this work, we propose a 3D fully convolutional architecture for video saliency prediction that employs hierarchical supervision on intermediate maps (referred to as conspicuity maps ) generated using features extracted at different abstraction levels. We provide the base hierarchical learning mec...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer vision 2021-12, Vol.129 (12), p.3216-3232
Main Authors: Bellitto, G., Proietto Salanitri, F., Palazzo, S., Rundo, F., Giordano, D., Spampinato, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c502t-90d3f97778efe18ceeabd89c6925341c845cba75e983bea764898894a6cfacb73
cites cdi_FETCH-LOGICAL-c502t-90d3f97778efe18ceeabd89c6925341c845cba75e983bea764898894a6cfacb73
container_end_page 3232
container_issue 12
container_start_page 3216
container_title International journal of computer vision
container_volume 129
creator Bellitto, G.
Proietto Salanitri, F.
Palazzo, S.
Rundo, F.
Giordano, D.
Spampinato, C.
description In this work, we propose a 3D fully convolutional architecture for video saliency prediction that employs hierarchical supervision on intermediate maps (referred to as conspicuity maps ) generated using features extracted at different abstraction levels. We provide the base hierarchical learning mechanism with two techniques for domain adaptation and domain-specific learning . For the former, we encourage the model to unsupervisedly learn hierarchical general features using gradient reversal at multiple scales, to enhance generalization capabilities on datasets for which no annotations are provided during training. As for domain specialization, we employ domain-specific operations (namely, priors, smoothing and batch normalization) by specializing the learned features on individual datasets in order to maximize performance. The results of our experiments show that the proposed model yields state-of-the-art accuracy on supervised saliency prediction. When the base hierarchical model is empowered with domain-specific modules, performance improves, outperforming state-of-the-art models on three out of five metrics on the DHF1K benchmark and reaching the second-best results on the other two. When, instead, we test it in an unsupervised domain adaptation setting, by enabling hierarchical gradient reversal layers, we obtain performance comparable to supervised state-of-the-art. Source code, trained models and example outputs are publicly available at https://github.com/perceivelab/hd2s .
doi_str_mv 10.1007/s11263-021-01519-y
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2588179696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A680694526</galeid><sourcerecordid>A680694526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-90d3f97778efe18ceeabd89c6925341c845cba75e983bea764898894a6cfacb73</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhkVIIY7bP9DTQk45KJW0q6-jSePGwdDStL2KsXbWkbElV1pD_O-76QaCL2EOA8PzzAy8hHzm7IYzpr8UzoWqKROcMi65pcczMuFS15Q3TJ6TCbOCUaksvyCXpWwYY8KIekIe7gNmyP4peNhWX9MOQqSzFvY9ttUcoT9krJYIOYa4rrqUqz-hxVQ9wjZg9MfqR8Y2-D6k-JF86GBb8NNrn5Lf87tft_d0-f3b4na2pF4y0VPL2rqzWmuDHXLjEWHVGuuVFbJuuDeN9CvQEq2pVwhaNcYaYxtQvgO_0vWUXI179zn9PWDp3SYdchxOOiGN4doqqwbqZqTWsEUXYpf6DH6oFnfBp4hdGOYzZZiyjRQvwvWJMDA9PvdrOJTiFo8_T1kxsj6nUjJ2bp_DDvLRceZeAnFjIG4IxP0PxB0HqR6lMsBxjfnt73esfwrWjSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2588179696</pqid></control><display><type>article</type><title>Hierarchical Domain-Adapted Feature Learning for Video Saliency Prediction</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Bellitto, G. ; Proietto Salanitri, F. ; Palazzo, S. ; Rundo, F. ; Giordano, D. ; Spampinato, C.</creator><creatorcontrib>Bellitto, G. ; Proietto Salanitri, F. ; Palazzo, S. ; Rundo, F. ; Giordano, D. ; Spampinato, C.</creatorcontrib><description>In this work, we propose a 3D fully convolutional architecture for video saliency prediction that employs hierarchical supervision on intermediate maps (referred to as conspicuity maps ) generated using features extracted at different abstraction levels. We provide the base hierarchical learning mechanism with two techniques for domain adaptation and domain-specific learning . For the former, we encourage the model to unsupervisedly learn hierarchical general features using gradient reversal at multiple scales, to enhance generalization capabilities on datasets for which no annotations are provided during training. As for domain specialization, we employ domain-specific operations (namely, priors, smoothing and batch normalization) by specializing the learned features on individual datasets in order to maximize performance. The results of our experiments show that the proposed model yields state-of-the-art accuracy on supervised saliency prediction. When the base hierarchical model is empowered with domain-specific modules, performance improves, outperforming state-of-the-art models on three out of five metrics on the DHF1K benchmark and reaching the second-best results on the other two. When, instead, we test it in an unsupervised domain adaptation setting, by enabling hierarchical gradient reversal layers, we obtain performance comparable to supervised state-of-the-art. Source code, trained models and example outputs are publicly available at https://github.com/perceivelab/hd2s .</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-021-01519-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptation ; Annotations ; Artificial Intelligence ; Computer Imaging ; Computer Science ; Conspicuity ; Datasets ; Feature extraction ; Image Processing and Computer Vision ; Learning ; Model accuracy ; Pattern Recognition ; Pattern Recognition and Graphics ; Salience ; Source code ; Vision</subject><ispartof>International journal of computer vision, 2021-12, Vol.129 (12), p.3216-3232</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-90d3f97778efe18ceeabd89c6925341c845cba75e983bea764898894a6cfacb73</citedby><cites>FETCH-LOGICAL-c502t-90d3f97778efe18ceeabd89c6925341c845cba75e983bea764898894a6cfacb73</cites><orcidid>0000-0002-2441-0982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2588179696/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2588179696?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Bellitto, G.</creatorcontrib><creatorcontrib>Proietto Salanitri, F.</creatorcontrib><creatorcontrib>Palazzo, S.</creatorcontrib><creatorcontrib>Rundo, F.</creatorcontrib><creatorcontrib>Giordano, D.</creatorcontrib><creatorcontrib>Spampinato, C.</creatorcontrib><title>Hierarchical Domain-Adapted Feature Learning for Video Saliency Prediction</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><description>In this work, we propose a 3D fully convolutional architecture for video saliency prediction that employs hierarchical supervision on intermediate maps (referred to as conspicuity maps ) generated using features extracted at different abstraction levels. We provide the base hierarchical learning mechanism with two techniques for domain adaptation and domain-specific learning . For the former, we encourage the model to unsupervisedly learn hierarchical general features using gradient reversal at multiple scales, to enhance generalization capabilities on datasets for which no annotations are provided during training. As for domain specialization, we employ domain-specific operations (namely, priors, smoothing and batch normalization) by specializing the learned features on individual datasets in order to maximize performance. The results of our experiments show that the proposed model yields state-of-the-art accuracy on supervised saliency prediction. When the base hierarchical model is empowered with domain-specific modules, performance improves, outperforming state-of-the-art models on three out of five metrics on the DHF1K benchmark and reaching the second-best results on the other two. When, instead, we test it in an unsupervised domain adaptation setting, by enabling hierarchical gradient reversal layers, we obtain performance comparable to supervised state-of-the-art. Source code, trained models and example outputs are publicly available at https://github.com/perceivelab/hd2s .</description><subject>Adaptation</subject><subject>Annotations</subject><subject>Artificial Intelligence</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Conspicuity</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Image Processing and Computer Vision</subject><subject>Learning</subject><subject>Model accuracy</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Salience</subject><subject>Source code</subject><subject>Vision</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kU1rGzEQhkVIIY7bP9DTQk45KJW0q6-jSePGwdDStL2KsXbWkbElV1pD_O-76QaCL2EOA8PzzAy8hHzm7IYzpr8UzoWqKROcMi65pcczMuFS15Q3TJ6TCbOCUaksvyCXpWwYY8KIekIe7gNmyP4peNhWX9MOQqSzFvY9ttUcoT9krJYIOYa4rrqUqz-hxVQ9wjZg9MfqR8Y2-D6k-JF86GBb8NNrn5Lf87tft_d0-f3b4na2pF4y0VPL2rqzWmuDHXLjEWHVGuuVFbJuuDeN9CvQEq2pVwhaNcYaYxtQvgO_0vWUXI179zn9PWDp3SYdchxOOiGN4doqqwbqZqTWsEUXYpf6DH6oFnfBp4hdGOYzZZiyjRQvwvWJMDA9PvdrOJTiFo8_T1kxsj6nUjJ2bp_DDvLRceZeAnFjIG4IxP0PxB0HqR6lMsBxjfnt73esfwrWjSw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Bellitto, G.</creator><creator>Proietto Salanitri, F.</creator><creator>Palazzo, S.</creator><creator>Rundo, F.</creator><creator>Giordano, D.</creator><creator>Spampinato, C.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2441-0982</orcidid></search><sort><creationdate>20211201</creationdate><title>Hierarchical Domain-Adapted Feature Learning for Video Saliency Prediction</title><author>Bellitto, G. ; Proietto Salanitri, F. ; Palazzo, S. ; Rundo, F. ; Giordano, D. ; Spampinato, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-90d3f97778efe18ceeabd89c6925341c845cba75e983bea764898894a6cfacb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Annotations</topic><topic>Artificial Intelligence</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Conspicuity</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Image Processing and Computer Vision</topic><topic>Learning</topic><topic>Model accuracy</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Salience</topic><topic>Source code</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bellitto, G.</creatorcontrib><creatorcontrib>Proietto Salanitri, F.</creatorcontrib><creatorcontrib>Palazzo, S.</creatorcontrib><creatorcontrib>Rundo, F.</creatorcontrib><creatorcontrib>Giordano, D.</creatorcontrib><creatorcontrib>Spampinato, C.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bellitto, G.</au><au>Proietto Salanitri, F.</au><au>Palazzo, S.</au><au>Rundo, F.</au><au>Giordano, D.</au><au>Spampinato, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Domain-Adapted Feature Learning for Video Saliency Prediction</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>129</volume><issue>12</issue><spage>3216</spage><epage>3232</epage><pages>3216-3232</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>In this work, we propose a 3D fully convolutional architecture for video saliency prediction that employs hierarchical supervision on intermediate maps (referred to as conspicuity maps ) generated using features extracted at different abstraction levels. We provide the base hierarchical learning mechanism with two techniques for domain adaptation and domain-specific learning . For the former, we encourage the model to unsupervisedly learn hierarchical general features using gradient reversal at multiple scales, to enhance generalization capabilities on datasets for which no annotations are provided during training. As for domain specialization, we employ domain-specific operations (namely, priors, smoothing and batch normalization) by specializing the learned features on individual datasets in order to maximize performance. The results of our experiments show that the proposed model yields state-of-the-art accuracy on supervised saliency prediction. When the base hierarchical model is empowered with domain-specific modules, performance improves, outperforming state-of-the-art models on three out of five metrics on the DHF1K benchmark and reaching the second-best results on the other two. When, instead, we test it in an unsupervised domain adaptation setting, by enabling hierarchical gradient reversal layers, we obtain performance comparable to supervised state-of-the-art. Source code, trained models and example outputs are publicly available at https://github.com/perceivelab/hd2s .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11263-021-01519-y</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2441-0982</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0920-5691
ispartof International journal of computer vision, 2021-12, Vol.129 (12), p.3216-3232
issn 0920-5691
1573-1405
language eng
recordid cdi_proquest_journals_2588179696
source ABI/INFORM Global; Springer Nature
subjects Adaptation
Annotations
Artificial Intelligence
Computer Imaging
Computer Science
Conspicuity
Datasets
Feature extraction
Image Processing and Computer Vision
Learning
Model accuracy
Pattern Recognition
Pattern Recognition and Graphics
Salience
Source code
Vision
title Hierarchical Domain-Adapted Feature Learning for Video Saliency Prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A01%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Domain-Adapted%20Feature%20Learning%20for%20Video%20Saliency%20Prediction&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Bellitto,%20G.&rft.date=2021-12-01&rft.volume=129&rft.issue=12&rft.spage=3216&rft.epage=3232&rft.pages=3216-3232&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-021-01519-y&rft_dat=%3Cgale_proqu%3EA680694526%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c502t-90d3f97778efe18ceeabd89c6925341c845cba75e983bea764898894a6cfacb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2588179696&rft_id=info:pmid/&rft_galeid=A680694526&rfr_iscdi=true