Loading…
A Novel Hybrid Model for Predicting Traffic Flow via Improved Ensemble Learning Combined with Deep Belief Networks
The intelligent transportation system (ITS) plays an irreplaceable role in alleviating urban traffic congestion and realizing sustainable urban development. Accurate and efficient short-term traffic state forecasting is a significant issue in ITS. This study proposes a novel hybrid model (ELM-IBF) t...
Saved in:
Published in: | Mathematical problems in engineering 2021-10, Vol.2021, p.1-16 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The intelligent transportation system (ITS) plays an irreplaceable role in alleviating urban traffic congestion and realizing sustainable urban development. Accurate and efficient short-term traffic state forecasting is a significant issue in ITS. This study proposes a novel hybrid model (ELM-IBF) to predict the traffic state on urban expressways by taking advantage of both deep learning models and ensemble learning framework. First, a developed bagging framework is introduced to combine several deep belief networks (DBNs) that are utilized to capture the complicated temporal characteristic of traffic flow. Then, a novel combination method named improved Bayesian fusion (IBF) is proposed to replace the averaging method in the bagging framework since it can better fuse the prediction results of the component DBNs by assigning the reasonable weights to DBNs at each prediction time interval. Finally, the proposed hybrid model is validated with ground-truth traffic flow data captured by the remote traffic microwave sensors installed on the multiple road sections of 2nd Ring Road in Beijing. The experimental results illustrate that the ELM-IBF method can effectively capture sharp fluctuations in the traffic flow. Compared with several benchmark models (e.g., artificial neural network, long short-term memory neural network, and DBN), the ELM-IBF model reveals better performance in forecasting single-step-ahead traffic volume and speed. Additionally, it is proved that the ELM-IBF model is capable of providing stable and high-quality results in multistep-ahead traffic flow prediction. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2021/7328056 |