Loading…

A direct computational method for nonlinear variable‐order fractional delay optimal control problems

This paper introduces a highly accurate operational matrix technique based upon the Chebyshev cardinal functions (CCFs) for solving a new category of nonlinear delay optimal control problems (OCPs) involving variable‐order (VO) fractional dynamical systems. The VO fractional derivatives are defined...

Full description

Saved in:
Bibliographic Details
Published in:Asian journal of control 2021-11, Vol.23 (6), p.2709-2718
Main Authors: Heydari, Mohammad Hossein, Avazzadeh, Zakieh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2978-f3121ffb299401c8e01726769d39488ee4360526d4bf0c17e3d3e19e4d1b3ce73
cites cdi_FETCH-LOGICAL-c2978-f3121ffb299401c8e01726769d39488ee4360526d4bf0c17e3d3e19e4d1b3ce73
container_end_page 2718
container_issue 6
container_start_page 2709
container_title Asian journal of control
container_volume 23
creator Heydari, Mohammad Hossein
Avazzadeh, Zakieh
description This paper introduces a highly accurate operational matrix technique based upon the Chebyshev cardinal functions (CCFs) for solving a new category of nonlinear delay optimal control problems (OCPs) involving variable‐order (VO) fractional dynamical systems. The VO fractional derivatives are defined in the Caputo type. The main aim is converting such OCPs into systems of algebraic equations. Thus, we first expand the state and control variables in terms of the CCFs with undetermined coefficients. Then, by utilizing the cardinal property of these basis functions, the delay terms in the problem under consideration are expanded in terms of the CCFs. Thereafter, these expansions are substituted into the cost functional, dynamical system and delay conditions. Next, the cardinality of the CCFs together with their operational matrix (OM) of VO fractional derivative are employed to extract a nonlinear algebraic equation from the cost functional, and several algebraic equations from the dynamical system and delay conditions. Eventually, the method of the constrained extremum is employed by coupling the algebraic constraints yielded from the dynamical system and delay conditions with the algebraic equation extracted from the cost functional using a set of Lagrange multipliers. The precision of the method is studied through different types of numerical examples.
doi_str_mv 10.1002/asjc.2408
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2590893820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2590893820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-f3121ffb299401c8e01726769d39488ee4360526d4bf0c17e3d3e19e4d1b3ce73</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEiFQ8AeWqCg28WMfdhlFPBWJAqgtrz0WG-2uF3sDSscn8I18CQ5JSzV3pHNnri5Cl5TMKCFsruPazFhOxBGaUMnzrCSSHyddlDQTJStO0VmMa0JKykUxQW6BbRPAjNj4btiMemx8r1vcwfjmLXY-4N73bdODDvhDh0bXLfx8fftgIWAXtDkYLLR6i_0wNl3ajO_H4Fs8BJ_4Lp6jE6fbCBeHOUWvtzcvy_ts9XT3sFysMsNkJTLHKaPO1UzKnFAjgNCKlVUpLZe5EAA5L0nBSpvXjhhaAbccqITc0pobqPgUXe3vpsfvG4ijWvtNSPmiYoUkQnLBSKKu95QJPsYATg0hxQ5bRYna1ah2NapdjYmd79nPpoXt_6BaPD8u_xy_y-t2lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2590893820</pqid></control><display><type>article</type><title>A direct computational method for nonlinear variable‐order fractional delay optimal control problems</title><source>Wiley</source><creator>Heydari, Mohammad Hossein ; Avazzadeh, Zakieh</creator><creatorcontrib>Heydari, Mohammad Hossein ; Avazzadeh, Zakieh</creatorcontrib><description>This paper introduces a highly accurate operational matrix technique based upon the Chebyshev cardinal functions (CCFs) for solving a new category of nonlinear delay optimal control problems (OCPs) involving variable‐order (VO) fractional dynamical systems. The VO fractional derivatives are defined in the Caputo type. The main aim is converting such OCPs into systems of algebraic equations. Thus, we first expand the state and control variables in terms of the CCFs with undetermined coefficients. Then, by utilizing the cardinal property of these basis functions, the delay terms in the problem under consideration are expanded in terms of the CCFs. Thereafter, these expansions are substituted into the cost functional, dynamical system and delay conditions. Next, the cardinality of the CCFs together with their operational matrix (OM) of VO fractional derivative are employed to extract a nonlinear algebraic equation from the cost functional, and several algebraic equations from the dynamical system and delay conditions. Eventually, the method of the constrained extremum is employed by coupling the algebraic constraints yielded from the dynamical system and delay conditions with the algebraic equation extracted from the cost functional using a set of Lagrange multipliers. The precision of the method is studied through different types of numerical examples.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.2408</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algebra ; Basis functions ; Chebyshev approximation ; Chebyshev cardinal functions (CCFs) ; Constraints ; Delay ; Dynamical systems ; Lagrange multiplier ; Nonlinear control ; operational matrix (OM) ; Optimal control ; optimal control problems (OCPs) ; variable‐order (VO) fractional delay optimal control problems (OCPs)</subject><ispartof>Asian journal of control, 2021-11, Vol.23 (6), p.2709-2718</ispartof><rights>2020 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd</rights><rights>2021 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-f3121ffb299401c8e01726769d39488ee4360526d4bf0c17e3d3e19e4d1b3ce73</citedby><cites>FETCH-LOGICAL-c2978-f3121ffb299401c8e01726769d39488ee4360526d4bf0c17e3d3e19e4d1b3ce73</cites><orcidid>0000-0002-2169-9485 ; 0000-0003-2257-1798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Heydari, Mohammad Hossein</creatorcontrib><creatorcontrib>Avazzadeh, Zakieh</creatorcontrib><title>A direct computational method for nonlinear variable‐order fractional delay optimal control problems</title><title>Asian journal of control</title><description>This paper introduces a highly accurate operational matrix technique based upon the Chebyshev cardinal functions (CCFs) for solving a new category of nonlinear delay optimal control problems (OCPs) involving variable‐order (VO) fractional dynamical systems. The VO fractional derivatives are defined in the Caputo type. The main aim is converting such OCPs into systems of algebraic equations. Thus, we first expand the state and control variables in terms of the CCFs with undetermined coefficients. Then, by utilizing the cardinal property of these basis functions, the delay terms in the problem under consideration are expanded in terms of the CCFs. Thereafter, these expansions are substituted into the cost functional, dynamical system and delay conditions. Next, the cardinality of the CCFs together with their operational matrix (OM) of VO fractional derivative are employed to extract a nonlinear algebraic equation from the cost functional, and several algebraic equations from the dynamical system and delay conditions. Eventually, the method of the constrained extremum is employed by coupling the algebraic constraints yielded from the dynamical system and delay conditions with the algebraic equation extracted from the cost functional using a set of Lagrange multipliers. The precision of the method is studied through different types of numerical examples.</description><subject>Algebra</subject><subject>Basis functions</subject><subject>Chebyshev approximation</subject><subject>Chebyshev cardinal functions (CCFs)</subject><subject>Constraints</subject><subject>Delay</subject><subject>Dynamical systems</subject><subject>Lagrange multiplier</subject><subject>Nonlinear control</subject><subject>operational matrix (OM)</subject><subject>Optimal control</subject><subject>optimal control problems (OCPs)</subject><subject>variable‐order (VO) fractional delay optimal control problems (OCPs)</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOAzEQRS0EEiFQ8AeWqCg28WMfdhlFPBWJAqgtrz0WG-2uF3sDSscn8I18CQ5JSzV3pHNnri5Cl5TMKCFsruPazFhOxBGaUMnzrCSSHyddlDQTJStO0VmMa0JKykUxQW6BbRPAjNj4btiMemx8r1vcwfjmLXY-4N73bdODDvhDh0bXLfx8fftgIWAXtDkYLLR6i_0wNl3ajO_H4Fs8BJ_4Lp6jE6fbCBeHOUWvtzcvy_ts9XT3sFysMsNkJTLHKaPO1UzKnFAjgNCKlVUpLZe5EAA5L0nBSpvXjhhaAbccqITc0pobqPgUXe3vpsfvG4ijWvtNSPmiYoUkQnLBSKKu95QJPsYATg0hxQ5bRYna1ah2NapdjYmd79nPpoXt_6BaPD8u_xy_y-t2lg</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Heydari, Mohammad Hossein</creator><creator>Avazzadeh, Zakieh</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-2169-9485</orcidid><orcidid>https://orcid.org/0000-0003-2257-1798</orcidid></search><sort><creationdate>202111</creationdate><title>A direct computational method for nonlinear variable‐order fractional delay optimal control problems</title><author>Heydari, Mohammad Hossein ; Avazzadeh, Zakieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-f3121ffb299401c8e01726769d39488ee4360526d4bf0c17e3d3e19e4d1b3ce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Basis functions</topic><topic>Chebyshev approximation</topic><topic>Chebyshev cardinal functions (CCFs)</topic><topic>Constraints</topic><topic>Delay</topic><topic>Dynamical systems</topic><topic>Lagrange multiplier</topic><topic>Nonlinear control</topic><topic>operational matrix (OM)</topic><topic>Optimal control</topic><topic>optimal control problems (OCPs)</topic><topic>variable‐order (VO) fractional delay optimal control problems (OCPs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heydari, Mohammad Hossein</creatorcontrib><creatorcontrib>Avazzadeh, Zakieh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heydari, Mohammad Hossein</au><au>Avazzadeh, Zakieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A direct computational method for nonlinear variable‐order fractional delay optimal control problems</atitle><jtitle>Asian journal of control</jtitle><date>2021-11</date><risdate>2021</risdate><volume>23</volume><issue>6</issue><spage>2709</spage><epage>2718</epage><pages>2709-2718</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>This paper introduces a highly accurate operational matrix technique based upon the Chebyshev cardinal functions (CCFs) for solving a new category of nonlinear delay optimal control problems (OCPs) involving variable‐order (VO) fractional dynamical systems. The VO fractional derivatives are defined in the Caputo type. The main aim is converting such OCPs into systems of algebraic equations. Thus, we first expand the state and control variables in terms of the CCFs with undetermined coefficients. Then, by utilizing the cardinal property of these basis functions, the delay terms in the problem under consideration are expanded in terms of the CCFs. Thereafter, these expansions are substituted into the cost functional, dynamical system and delay conditions. Next, the cardinality of the CCFs together with their operational matrix (OM) of VO fractional derivative are employed to extract a nonlinear algebraic equation from the cost functional, and several algebraic equations from the dynamical system and delay conditions. Eventually, the method of the constrained extremum is employed by coupling the algebraic constraints yielded from the dynamical system and delay conditions with the algebraic equation extracted from the cost functional using a set of Lagrange multipliers. The precision of the method is studied through different types of numerical examples.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asjc.2408</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2169-9485</orcidid><orcidid>https://orcid.org/0000-0003-2257-1798</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1561-8625
ispartof Asian journal of control, 2021-11, Vol.23 (6), p.2709-2718
issn 1561-8625
1934-6093
language eng
recordid cdi_proquest_journals_2590893820
source Wiley
subjects Algebra
Basis functions
Chebyshev approximation
Chebyshev cardinal functions (CCFs)
Constraints
Delay
Dynamical systems
Lagrange multiplier
Nonlinear control
operational matrix (OM)
Optimal control
optimal control problems (OCPs)
variable‐order (VO) fractional delay optimal control problems (OCPs)
title A direct computational method for nonlinear variable‐order fractional delay optimal control problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20direct%20computational%20method%20for%20nonlinear%20variable%E2%80%90order%20fractional%20delay%20optimal%20control%20problems&rft.jtitle=Asian%20journal%20of%20control&rft.au=Heydari,%20Mohammad%20Hossein&rft.date=2021-11&rft.volume=23&rft.issue=6&rft.spage=2709&rft.epage=2718&rft.pages=2709-2718&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.2408&rft_dat=%3Cproquest_cross%3E2590893820%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2978-f3121ffb299401c8e01726769d39488ee4360526d4bf0c17e3d3e19e4d1b3ce73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2590893820&rft_id=info:pmid/&rfr_iscdi=true