Loading…
A direct computational method for nonlinear variable‐order fractional delay optimal control problems
This paper introduces a highly accurate operational matrix technique based upon the Chebyshev cardinal functions (CCFs) for solving a new category of nonlinear delay optimal control problems (OCPs) involving variable‐order (VO) fractional dynamical systems. The VO fractional derivatives are defined...
Saved in:
Published in: | Asian journal of control 2021-11, Vol.23 (6), p.2709-2718 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2978-f3121ffb299401c8e01726769d39488ee4360526d4bf0c17e3d3e19e4d1b3ce73 |
---|---|
cites | cdi_FETCH-LOGICAL-c2978-f3121ffb299401c8e01726769d39488ee4360526d4bf0c17e3d3e19e4d1b3ce73 |
container_end_page | 2718 |
container_issue | 6 |
container_start_page | 2709 |
container_title | Asian journal of control |
container_volume | 23 |
creator | Heydari, Mohammad Hossein Avazzadeh, Zakieh |
description | This paper introduces a highly accurate operational matrix technique based upon the Chebyshev cardinal functions (CCFs) for solving a new category of nonlinear delay optimal control problems (OCPs) involving variable‐order (VO) fractional dynamical systems. The VO fractional derivatives are defined in the Caputo type. The main aim is converting such OCPs into systems of algebraic equations. Thus, we first expand the state and control variables in terms of the CCFs with undetermined coefficients. Then, by utilizing the cardinal property of these basis functions, the delay terms in the problem under consideration are expanded in terms of the CCFs. Thereafter, these expansions are substituted into the cost functional, dynamical system and delay conditions. Next, the cardinality of the CCFs together with their operational matrix (OM) of VO fractional derivative are employed to extract a nonlinear algebraic equation from the cost functional, and several algebraic equations from the dynamical system and delay conditions. Eventually, the method of the constrained extremum is employed by coupling the algebraic constraints yielded from the dynamical system and delay conditions with the algebraic equation extracted from the cost functional using a set of Lagrange multipliers. The precision of the method is studied through different types of numerical examples. |
doi_str_mv | 10.1002/asjc.2408 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2590893820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2590893820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-f3121ffb299401c8e01726769d39488ee4360526d4bf0c17e3d3e19e4d1b3ce73</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEiFQ8AeWqCg28WMfdhlFPBWJAqgtrz0WG-2uF3sDSscn8I18CQ5JSzV3pHNnri5Cl5TMKCFsruPazFhOxBGaUMnzrCSSHyddlDQTJStO0VmMa0JKykUxQW6BbRPAjNj4btiMemx8r1vcwfjmLXY-4N73bdODDvhDh0bXLfx8fftgIWAXtDkYLLR6i_0wNl3ajO_H4Fs8BJ_4Lp6jE6fbCBeHOUWvtzcvy_ts9XT3sFysMsNkJTLHKaPO1UzKnFAjgNCKlVUpLZe5EAA5L0nBSpvXjhhaAbccqITc0pobqPgUXe3vpsfvG4ijWvtNSPmiYoUkQnLBSKKu95QJPsYATg0hxQ5bRYna1ah2NapdjYmd79nPpoXt_6BaPD8u_xy_y-t2lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2590893820</pqid></control><display><type>article</type><title>A direct computational method for nonlinear variable‐order fractional delay optimal control problems</title><source>Wiley</source><creator>Heydari, Mohammad Hossein ; Avazzadeh, Zakieh</creator><creatorcontrib>Heydari, Mohammad Hossein ; Avazzadeh, Zakieh</creatorcontrib><description>This paper introduces a highly accurate operational matrix technique based upon the Chebyshev cardinal functions (CCFs) for solving a new category of nonlinear delay optimal control problems (OCPs) involving variable‐order (VO) fractional dynamical systems. The VO fractional derivatives are defined in the Caputo type. The main aim is converting such OCPs into systems of algebraic equations. Thus, we first expand the state and control variables in terms of the CCFs with undetermined coefficients. Then, by utilizing the cardinal property of these basis functions, the delay terms in the problem under consideration are expanded in terms of the CCFs. Thereafter, these expansions are substituted into the cost functional, dynamical system and delay conditions. Next, the cardinality of the CCFs together with their operational matrix (OM) of VO fractional derivative are employed to extract a nonlinear algebraic equation from the cost functional, and several algebraic equations from the dynamical system and delay conditions. Eventually, the method of the constrained extremum is employed by coupling the algebraic constraints yielded from the dynamical system and delay conditions with the algebraic equation extracted from the cost functional using a set of Lagrange multipliers. The precision of the method is studied through different types of numerical examples.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.2408</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algebra ; Basis functions ; Chebyshev approximation ; Chebyshev cardinal functions (CCFs) ; Constraints ; Delay ; Dynamical systems ; Lagrange multiplier ; Nonlinear control ; operational matrix (OM) ; Optimal control ; optimal control problems (OCPs) ; variable‐order (VO) fractional delay optimal control problems (OCPs)</subject><ispartof>Asian journal of control, 2021-11, Vol.23 (6), p.2709-2718</ispartof><rights>2020 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd</rights><rights>2021 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-f3121ffb299401c8e01726769d39488ee4360526d4bf0c17e3d3e19e4d1b3ce73</citedby><cites>FETCH-LOGICAL-c2978-f3121ffb299401c8e01726769d39488ee4360526d4bf0c17e3d3e19e4d1b3ce73</cites><orcidid>0000-0002-2169-9485 ; 0000-0003-2257-1798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Heydari, Mohammad Hossein</creatorcontrib><creatorcontrib>Avazzadeh, Zakieh</creatorcontrib><title>A direct computational method for nonlinear variable‐order fractional delay optimal control problems</title><title>Asian journal of control</title><description>This paper introduces a highly accurate operational matrix technique based upon the Chebyshev cardinal functions (CCFs) for solving a new category of nonlinear delay optimal control problems (OCPs) involving variable‐order (VO) fractional dynamical systems. The VO fractional derivatives are defined in the Caputo type. The main aim is converting such OCPs into systems of algebraic equations. Thus, we first expand the state and control variables in terms of the CCFs with undetermined coefficients. Then, by utilizing the cardinal property of these basis functions, the delay terms in the problem under consideration are expanded in terms of the CCFs. Thereafter, these expansions are substituted into the cost functional, dynamical system and delay conditions. Next, the cardinality of the CCFs together with their operational matrix (OM) of VO fractional derivative are employed to extract a nonlinear algebraic equation from the cost functional, and several algebraic equations from the dynamical system and delay conditions. Eventually, the method of the constrained extremum is employed by coupling the algebraic constraints yielded from the dynamical system and delay conditions with the algebraic equation extracted from the cost functional using a set of Lagrange multipliers. The precision of the method is studied through different types of numerical examples.</description><subject>Algebra</subject><subject>Basis functions</subject><subject>Chebyshev approximation</subject><subject>Chebyshev cardinal functions (CCFs)</subject><subject>Constraints</subject><subject>Delay</subject><subject>Dynamical systems</subject><subject>Lagrange multiplier</subject><subject>Nonlinear control</subject><subject>operational matrix (OM)</subject><subject>Optimal control</subject><subject>optimal control problems (OCPs)</subject><subject>variable‐order (VO) fractional delay optimal control problems (OCPs)</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOAzEQRS0EEiFQ8AeWqCg28WMfdhlFPBWJAqgtrz0WG-2uF3sDSscn8I18CQ5JSzV3pHNnri5Cl5TMKCFsruPazFhOxBGaUMnzrCSSHyddlDQTJStO0VmMa0JKykUxQW6BbRPAjNj4btiMemx8r1vcwfjmLXY-4N73bdODDvhDh0bXLfx8fftgIWAXtDkYLLR6i_0wNl3ajO_H4Fs8BJ_4Lp6jE6fbCBeHOUWvtzcvy_ts9XT3sFysMsNkJTLHKaPO1UzKnFAjgNCKlVUpLZe5EAA5L0nBSpvXjhhaAbccqITc0pobqPgUXe3vpsfvG4ijWvtNSPmiYoUkQnLBSKKu95QJPsYATg0hxQ5bRYna1ah2NapdjYmd79nPpoXt_6BaPD8u_xy_y-t2lg</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Heydari, Mohammad Hossein</creator><creator>Avazzadeh, Zakieh</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-2169-9485</orcidid><orcidid>https://orcid.org/0000-0003-2257-1798</orcidid></search><sort><creationdate>202111</creationdate><title>A direct computational method for nonlinear variable‐order fractional delay optimal control problems</title><author>Heydari, Mohammad Hossein ; Avazzadeh, Zakieh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-f3121ffb299401c8e01726769d39488ee4360526d4bf0c17e3d3e19e4d1b3ce73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Basis functions</topic><topic>Chebyshev approximation</topic><topic>Chebyshev cardinal functions (CCFs)</topic><topic>Constraints</topic><topic>Delay</topic><topic>Dynamical systems</topic><topic>Lagrange multiplier</topic><topic>Nonlinear control</topic><topic>operational matrix (OM)</topic><topic>Optimal control</topic><topic>optimal control problems (OCPs)</topic><topic>variable‐order (VO) fractional delay optimal control problems (OCPs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heydari, Mohammad Hossein</creatorcontrib><creatorcontrib>Avazzadeh, Zakieh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heydari, Mohammad Hossein</au><au>Avazzadeh, Zakieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A direct computational method for nonlinear variable‐order fractional delay optimal control problems</atitle><jtitle>Asian journal of control</jtitle><date>2021-11</date><risdate>2021</risdate><volume>23</volume><issue>6</issue><spage>2709</spage><epage>2718</epage><pages>2709-2718</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>This paper introduces a highly accurate operational matrix technique based upon the Chebyshev cardinal functions (CCFs) for solving a new category of nonlinear delay optimal control problems (OCPs) involving variable‐order (VO) fractional dynamical systems. The VO fractional derivatives are defined in the Caputo type. The main aim is converting such OCPs into systems of algebraic equations. Thus, we first expand the state and control variables in terms of the CCFs with undetermined coefficients. Then, by utilizing the cardinal property of these basis functions, the delay terms in the problem under consideration are expanded in terms of the CCFs. Thereafter, these expansions are substituted into the cost functional, dynamical system and delay conditions. Next, the cardinality of the CCFs together with their operational matrix (OM) of VO fractional derivative are employed to extract a nonlinear algebraic equation from the cost functional, and several algebraic equations from the dynamical system and delay conditions. Eventually, the method of the constrained extremum is employed by coupling the algebraic constraints yielded from the dynamical system and delay conditions with the algebraic equation extracted from the cost functional using a set of Lagrange multipliers. The precision of the method is studied through different types of numerical examples.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asjc.2408</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2169-9485</orcidid><orcidid>https://orcid.org/0000-0003-2257-1798</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1561-8625 |
ispartof | Asian journal of control, 2021-11, Vol.23 (6), p.2709-2718 |
issn | 1561-8625 1934-6093 |
language | eng |
recordid | cdi_proquest_journals_2590893820 |
source | Wiley |
subjects | Algebra Basis functions Chebyshev approximation Chebyshev cardinal functions (CCFs) Constraints Delay Dynamical systems Lagrange multiplier Nonlinear control operational matrix (OM) Optimal control optimal control problems (OCPs) variable‐order (VO) fractional delay optimal control problems (OCPs) |
title | A direct computational method for nonlinear variable‐order fractional delay optimal control problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A05%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20direct%20computational%20method%20for%20nonlinear%20variable%E2%80%90order%20fractional%20delay%20optimal%20control%20problems&rft.jtitle=Asian%20journal%20of%20control&rft.au=Heydari,%20Mohammad%20Hossein&rft.date=2021-11&rft.volume=23&rft.issue=6&rft.spage=2709&rft.epage=2718&rft.pages=2709-2718&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.2408&rft_dat=%3Cproquest_cross%3E2590893820%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2978-f3121ffb299401c8e01726769d39488ee4360526d4bf0c17e3d3e19e4d1b3ce73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2590893820&rft_id=info:pmid/&rfr_iscdi=true |