Loading…

Effective pseudocapacitive performance of binder free transparent α-V2O5 thin film electrode: Electrochemical and some surface probing

Vanadium oxide nanomaterial was successfully prepared on conductive substrate via a simple and facile chemical route with no binder or additive. The film was characterized to investigate its microstructural, optical, electrical and electrochemical properties. The SEM micrographs of the annealed film...

Full description

Saved in:
Bibliographic Details
Published in:Physica. B, Condensed matter Condensed matter, 2021-11, Vol.621, p.413260, Article 413260
Main Authors: Adewinbi, S.A., Busari, R.A., Animasahun, L.O., Omotoso, E., Taleatu, B.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c246t-38aedce35c6f53757b909f3b95b796679bf7673f5d3bc924057820d17702c3d3
cites cdi_FETCH-LOGICAL-c246t-38aedce35c6f53757b909f3b95b796679bf7673f5d3bc924057820d17702c3d3
container_end_page
container_issue
container_start_page 413260
container_title Physica. B, Condensed matter
container_volume 621
creator Adewinbi, S.A.
Busari, R.A.
Animasahun, L.O.
Omotoso, E.
Taleatu, B.A.
description Vanadium oxide nanomaterial was successfully prepared on conductive substrate via a simple and facile chemical route with no binder or additive. The film was characterized to investigate its microstructural, optical, electrical and electrochemical properties. The SEM micrographs of the annealed film presented enabling environment that is required for effective photocatalysis. It also demonstrated enhanced interaction between the film and the substrate and adequate pore size distribution that can allow free electrolytic ion intercalation/deintercalation for efficient supercapacitive response. EDX confirmed the elemental composition of the film. XRD and Raman spectroscopy showed substantial characteristic peaks that are attributes of orthorhombic crystal structure of V2O5 powder. Optical studies showed that the film exhibited high visible light transmittance and its energy band gap was found to be 2.77 eV. Pseudocapacitive performance of the V2O5 electrode was investigated via a three-electrode cell configuration. The film electrode exhibited highest areal capacity of 1.18 μAh cm−2, energy density of 0.485 μWhcm−2 at a power density of 107.71 μWcm−2 and current density 0.25 mAcm−2, moderate charge transfer resistance and superior cycling stability. The study demonstrated the viability of V2O5 film as electrode material for the development of high-performance supercapacitors. •Determined suitable precursors and growth conditions that will yield binderless nanocrystalline V2O5 thin film on conductive ITO glass substrate.•Investigated surface crystalinity, morphology and resistivity of the deposited layer.•Studied optical trasmittance and band structurs of the deposited layer to appraise its optoelectronic properties.•Evaluated the electrochemical performance of the film as stable electrodes for charge storage capability; and.•Examined the charge-discharge potential of the film for energy storage application.
doi_str_mv 10.1016/j.physb.2021.413260
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2591491997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452621004348</els_id><sourcerecordid>2591491997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-38aedce35c6f53757b909f3b95b796679bf7673f5d3bc924057820d17702c3d3</originalsourceid><addsrcrecordid>eNp9kE1KBDEQhYMoOI6ewE3AdY_56XQmgguR8QcEN-I2pJOKk2G60yY9gifwPF7EMxlt19amiqLee8WH0CklC0poc75ZDOv33C4YYXRRU84asodmdCl5xSgX-2hGFKNVLVhziI5y3pBSVNIZ-lh5D3YMb4CHDDsXrRmMDdMCko-pM70FHD1uQ-8gYZ8A8JhMnweToB_x12f1zB4FHtehxz5sOwzbYpmigwu8mka7hi5Ys8WmdzjHDnDeJW-K8ZBiMX45RgfebDOc_PU5erpZPV3fVQ-Pt_fXVw-VZXUzVnxpwFngwjZecClkq4jyvFWilapppGq9bCT3wvHWKlYTIZeMOColYZY7Pkdnk22Jfd1BHvUm7lJfEjUTitaKKiXLFZ-ubIo5J_B6SKEz6V1Ton-A643-Ba5_gOsJeFFdTioo_78FSDrbAAWeC6lA0C6Gf_XfL6WMug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591491997</pqid></control><display><type>article</type><title>Effective pseudocapacitive performance of binder free transparent α-V2O5 thin film electrode: Electrochemical and some surface probing</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Adewinbi, S.A. ; Busari, R.A. ; Animasahun, L.O. ; Omotoso, E. ; Taleatu, B.A.</creator><creatorcontrib>Adewinbi, S.A. ; Busari, R.A. ; Animasahun, L.O. ; Omotoso, E. ; Taleatu, B.A.</creatorcontrib><description>Vanadium oxide nanomaterial was successfully prepared on conductive substrate via a simple and facile chemical route with no binder or additive. The film was characterized to investigate its microstructural, optical, electrical and electrochemical properties. The SEM micrographs of the annealed film presented enabling environment that is required for effective photocatalysis. It also demonstrated enhanced interaction between the film and the substrate and adequate pore size distribution that can allow free electrolytic ion intercalation/deintercalation for efficient supercapacitive response. EDX confirmed the elemental composition of the film. XRD and Raman spectroscopy showed substantial characteristic peaks that are attributes of orthorhombic crystal structure of V2O5 powder. Optical studies showed that the film exhibited high visible light transmittance and its energy band gap was found to be 2.77 eV. Pseudocapacitive performance of the V2O5 electrode was investigated via a three-electrode cell configuration. The film electrode exhibited highest areal capacity of 1.18 μAh cm−2, energy density of 0.485 μWhcm−2 at a power density of 107.71 μWcm−2 and current density 0.25 mAcm−2, moderate charge transfer resistance and superior cycling stability. The study demonstrated the viability of V2O5 film as electrode material for the development of high-performance supercapacitors. •Determined suitable precursors and growth conditions that will yield binderless nanocrystalline V2O5 thin film on conductive ITO glass substrate.•Investigated surface crystalinity, morphology and resistivity of the deposited layer.•Studied optical trasmittance and band structurs of the deposited layer to appraise its optoelectronic properties.•Evaluated the electrochemical performance of the film as stable electrodes for charge storage capability; and.•Examined the charge-discharge potential of the film for energy storage application.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2021.413260</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Areal capacitance ; Charge transfer ; Crystal structure ; Crystallinity ; Cycling stability ; Electrochemical analysis ; Electrode materials ; Electrodeposition ; Electrodes ; Energy bands ; Energy gap ; Flux density ; Light transmittance ; Microstructure ; Nanomaterials ; Optical properties ; Photocatalysis ; Photomicrographs ; Pore size distribution ; Pseudocapacitor ; Raman spectroscopy ; Substrates ; Thin films ; Vanadium oxides ; Vanadium pentoxide</subject><ispartof>Physica. B, Condensed matter, 2021-11, Vol.621, p.413260, Article 413260</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-38aedce35c6f53757b909f3b95b796679bf7673f5d3bc924057820d17702c3d3</citedby><cites>FETCH-LOGICAL-c246t-38aedce35c6f53757b909f3b95b796679bf7673f5d3bc924057820d17702c3d3</cites><orcidid>0000-0002-5693-9792 ; 0000-0003-3570-5994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Adewinbi, S.A.</creatorcontrib><creatorcontrib>Busari, R.A.</creatorcontrib><creatorcontrib>Animasahun, L.O.</creatorcontrib><creatorcontrib>Omotoso, E.</creatorcontrib><creatorcontrib>Taleatu, B.A.</creatorcontrib><title>Effective pseudocapacitive performance of binder free transparent α-V2O5 thin film electrode: Electrochemical and some surface probing</title><title>Physica. B, Condensed matter</title><description>Vanadium oxide nanomaterial was successfully prepared on conductive substrate via a simple and facile chemical route with no binder or additive. The film was characterized to investigate its microstructural, optical, electrical and electrochemical properties. The SEM micrographs of the annealed film presented enabling environment that is required for effective photocatalysis. It also demonstrated enhanced interaction between the film and the substrate and adequate pore size distribution that can allow free electrolytic ion intercalation/deintercalation for efficient supercapacitive response. EDX confirmed the elemental composition of the film. XRD and Raman spectroscopy showed substantial characteristic peaks that are attributes of orthorhombic crystal structure of V2O5 powder. Optical studies showed that the film exhibited high visible light transmittance and its energy band gap was found to be 2.77 eV. Pseudocapacitive performance of the V2O5 electrode was investigated via a three-electrode cell configuration. The film electrode exhibited highest areal capacity of 1.18 μAh cm−2, energy density of 0.485 μWhcm−2 at a power density of 107.71 μWcm−2 and current density 0.25 mAcm−2, moderate charge transfer resistance and superior cycling stability. The study demonstrated the viability of V2O5 film as electrode material for the development of high-performance supercapacitors. •Determined suitable precursors and growth conditions that will yield binderless nanocrystalline V2O5 thin film on conductive ITO glass substrate.•Investigated surface crystalinity, morphology and resistivity of the deposited layer.•Studied optical trasmittance and band structurs of the deposited layer to appraise its optoelectronic properties.•Evaluated the electrochemical performance of the film as stable electrodes for charge storage capability; and.•Examined the charge-discharge potential of the film for energy storage application.</description><subject>Areal capacitance</subject><subject>Charge transfer</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Cycling stability</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodeposition</subject><subject>Electrodes</subject><subject>Energy bands</subject><subject>Energy gap</subject><subject>Flux density</subject><subject>Light transmittance</subject><subject>Microstructure</subject><subject>Nanomaterials</subject><subject>Optical properties</subject><subject>Photocatalysis</subject><subject>Photomicrographs</subject><subject>Pore size distribution</subject><subject>Pseudocapacitor</subject><subject>Raman spectroscopy</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Vanadium oxides</subject><subject>Vanadium pentoxide</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1KBDEQhYMoOI6ewE3AdY_56XQmgguR8QcEN-I2pJOKk2G60yY9gifwPF7EMxlt19amiqLee8WH0CklC0poc75ZDOv33C4YYXRRU84asodmdCl5xSgX-2hGFKNVLVhziI5y3pBSVNIZ-lh5D3YMb4CHDDsXrRmMDdMCko-pM70FHD1uQ-8gYZ8A8JhMnweToB_x12f1zB4FHtehxz5sOwzbYpmigwu8mka7hi5Ys8WmdzjHDnDeJW-K8ZBiMX45RgfebDOc_PU5erpZPV3fVQ-Pt_fXVw-VZXUzVnxpwFngwjZecClkq4jyvFWilapppGq9bCT3wvHWKlYTIZeMOColYZY7Pkdnk22Jfd1BHvUm7lJfEjUTitaKKiXLFZ-ubIo5J_B6SKEz6V1Ton-A643-Ba5_gOsJeFFdTioo_78FSDrbAAWeC6lA0C6Gf_XfL6WMug</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>Adewinbi, S.A.</creator><creator>Busari, R.A.</creator><creator>Animasahun, L.O.</creator><creator>Omotoso, E.</creator><creator>Taleatu, B.A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5693-9792</orcidid><orcidid>https://orcid.org/0000-0003-3570-5994</orcidid></search><sort><creationdate>20211115</creationdate><title>Effective pseudocapacitive performance of binder free transparent α-V2O5 thin film electrode: Electrochemical and some surface probing</title><author>Adewinbi, S.A. ; Busari, R.A. ; Animasahun, L.O. ; Omotoso, E. ; Taleatu, B.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-38aedce35c6f53757b909f3b95b796679bf7673f5d3bc924057820d17702c3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Areal capacitance</topic><topic>Charge transfer</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Cycling stability</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodeposition</topic><topic>Electrodes</topic><topic>Energy bands</topic><topic>Energy gap</topic><topic>Flux density</topic><topic>Light transmittance</topic><topic>Microstructure</topic><topic>Nanomaterials</topic><topic>Optical properties</topic><topic>Photocatalysis</topic><topic>Photomicrographs</topic><topic>Pore size distribution</topic><topic>Pseudocapacitor</topic><topic>Raman spectroscopy</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Vanadium oxides</topic><topic>Vanadium pentoxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adewinbi, S.A.</creatorcontrib><creatorcontrib>Busari, R.A.</creatorcontrib><creatorcontrib>Animasahun, L.O.</creatorcontrib><creatorcontrib>Omotoso, E.</creatorcontrib><creatorcontrib>Taleatu, B.A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adewinbi, S.A.</au><au>Busari, R.A.</au><au>Animasahun, L.O.</au><au>Omotoso, E.</au><au>Taleatu, B.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective pseudocapacitive performance of binder free transparent α-V2O5 thin film electrode: Electrochemical and some surface probing</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>621</volume><spage>413260</spage><pages>413260-</pages><artnum>413260</artnum><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>Vanadium oxide nanomaterial was successfully prepared on conductive substrate via a simple and facile chemical route with no binder or additive. The film was characterized to investigate its microstructural, optical, electrical and electrochemical properties. The SEM micrographs of the annealed film presented enabling environment that is required for effective photocatalysis. It also demonstrated enhanced interaction between the film and the substrate and adequate pore size distribution that can allow free electrolytic ion intercalation/deintercalation for efficient supercapacitive response. EDX confirmed the elemental composition of the film. XRD and Raman spectroscopy showed substantial characteristic peaks that are attributes of orthorhombic crystal structure of V2O5 powder. Optical studies showed that the film exhibited high visible light transmittance and its energy band gap was found to be 2.77 eV. Pseudocapacitive performance of the V2O5 electrode was investigated via a three-electrode cell configuration. The film electrode exhibited highest areal capacity of 1.18 μAh cm−2, energy density of 0.485 μWhcm−2 at a power density of 107.71 μWcm−2 and current density 0.25 mAcm−2, moderate charge transfer resistance and superior cycling stability. The study demonstrated the viability of V2O5 film as electrode material for the development of high-performance supercapacitors. •Determined suitable precursors and growth conditions that will yield binderless nanocrystalline V2O5 thin film on conductive ITO glass substrate.•Investigated surface crystalinity, morphology and resistivity of the deposited layer.•Studied optical trasmittance and band structurs of the deposited layer to appraise its optoelectronic properties.•Evaluated the electrochemical performance of the film as stable electrodes for charge storage capability; and.•Examined the charge-discharge potential of the film for energy storage application.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2021.413260</doi><orcidid>https://orcid.org/0000-0002-5693-9792</orcidid><orcidid>https://orcid.org/0000-0003-3570-5994</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2021-11, Vol.621, p.413260, Article 413260
issn 0921-4526
1873-2135
language eng
recordid cdi_proquest_journals_2591491997
source ScienceDirect Freedom Collection 2022-2024
subjects Areal capacitance
Charge transfer
Crystal structure
Crystallinity
Cycling stability
Electrochemical analysis
Electrode materials
Electrodeposition
Electrodes
Energy bands
Energy gap
Flux density
Light transmittance
Microstructure
Nanomaterials
Optical properties
Photocatalysis
Photomicrographs
Pore size distribution
Pseudocapacitor
Raman spectroscopy
Substrates
Thin films
Vanadium oxides
Vanadium pentoxide
title Effective pseudocapacitive performance of binder free transparent α-V2O5 thin film electrode: Electrochemical and some surface probing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20pseudocapacitive%20performance%20of%20binder%20free%20transparent%20%CE%B1-V2O5%20thin%20film%20electrode:%20Electrochemical%20and%20some%20surface%20probing&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Adewinbi,%20S.A.&rft.date=2021-11-15&rft.volume=621&rft.spage=413260&rft.pages=413260-&rft.artnum=413260&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2021.413260&rft_dat=%3Cproquest_cross%3E2591491997%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c246t-38aedce35c6f53757b909f3b95b796679bf7673f5d3bc924057820d17702c3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2591491997&rft_id=info:pmid/&rfr_iscdi=true