Loading…
Multi-Task Learning based Convolutional Models with Curriculum Learning for the Anisotropic Reynolds Stress Tensor in Turbulent Duct Flow
The Reynolds-averaged Navier-Stokes (RANS) equations require accurate modeling of the anisotropic Reynolds stress tensor. Traditional closure models, while sophisticated, often only apply to restricted flow configurations. Researchers have started using machine learning approaches to tackle this pro...
Saved in:
Published in: | arXiv.org 2022-01 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Haitz Sáez de Ocáriz Borde Sondak, David Protopapas, Pavlos |
description | The Reynolds-averaged Navier-Stokes (RANS) equations require accurate modeling of the anisotropic Reynolds stress tensor. Traditional closure models, while sophisticated, often only apply to restricted flow configurations. Researchers have started using machine learning approaches to tackle this problem by developing more general closure models informed by data. In this work we build upon recent convolutional neural network architectures used for turbulence modeling and propose a multi-task learning-based fully convolutional neural network that is able to accurately predict the normalized anisotropic Reynolds stress tensor for turbulent duct flows. Furthermore, we also explore the application of curriculum learning to data-driven turbulence modeling. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2591831733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591831733</sourcerecordid><originalsourceid>FETCH-proquest_journals_25918317333</originalsourceid><addsrcrecordid>eNqNjrFKA0EQQBdBMGj-YcD64G43Z2Ipp8HCNHp92NxNzMZxJ87sGPwE_9oUgq3Va96Dd-YmPoSmWsy8v3BT1X1d1_5m7ts2TNz3yqikqo_6Bk8YJaf8CpuoOELH-ZPJSuIcCVY8IikcU9lBZyJpMLL3v2bLAmWHcJeTchE-pAGe8SszjQovRVAVesx60lKG3mRjhLnAvQ0FlsTHK3e-jaQ4_eWlu14-9N1jdRD-MNSy3rPJaUXXvr1tFqGZhxD-Z_0AlQpUig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591831733</pqid></control><display><type>article</type><title>Multi-Task Learning based Convolutional Models with Curriculum Learning for the Anisotropic Reynolds Stress Tensor in Turbulent Duct Flow</title><source>Publicly Available Content Database</source><creator>Haitz Sáez de Ocáriz Borde ; Sondak, David ; Protopapas, Pavlos</creator><creatorcontrib>Haitz Sáez de Ocáriz Borde ; Sondak, David ; Protopapas, Pavlos</creatorcontrib><description>The Reynolds-averaged Navier-Stokes (RANS) equations require accurate modeling of the anisotropic Reynolds stress tensor. Traditional closure models, while sophisticated, often only apply to restricted flow configurations. Researchers have started using machine learning approaches to tackle this problem by developing more general closure models informed by data. In this work we build upon recent convolutional neural network architectures used for turbulence modeling and propose a multi-task learning-based fully convolutional neural network that is able to accurately predict the normalized anisotropic Reynolds stress tensor for turbulent duct flows. Furthermore, we also explore the application of curriculum learning to data-driven turbulence modeling.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Computer architecture ; Curricula ; Fluid dynamics ; Machine learning ; Mathematical analysis ; Modelling ; Neural networks ; Reynolds averaged Navier-Stokes method ; Reynolds stress ; Tensors ; Turbulence ; Turbulent flow</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2591831733?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Haitz Sáez de Ocáriz Borde</creatorcontrib><creatorcontrib>Sondak, David</creatorcontrib><creatorcontrib>Protopapas, Pavlos</creatorcontrib><title>Multi-Task Learning based Convolutional Models with Curriculum Learning for the Anisotropic Reynolds Stress Tensor in Turbulent Duct Flow</title><title>arXiv.org</title><description>The Reynolds-averaged Navier-Stokes (RANS) equations require accurate modeling of the anisotropic Reynolds stress tensor. Traditional closure models, while sophisticated, often only apply to restricted flow configurations. Researchers have started using machine learning approaches to tackle this problem by developing more general closure models informed by data. In this work we build upon recent convolutional neural network architectures used for turbulence modeling and propose a multi-task learning-based fully convolutional neural network that is able to accurately predict the normalized anisotropic Reynolds stress tensor for turbulent duct flows. Furthermore, we also explore the application of curriculum learning to data-driven turbulence modeling.</description><subject>Artificial neural networks</subject><subject>Computer architecture</subject><subject>Curricula</subject><subject>Fluid dynamics</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Reynolds stress</subject><subject>Tensors</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjrFKA0EQQBdBMGj-YcD64G43Z2Ipp8HCNHp92NxNzMZxJ87sGPwE_9oUgq3Va96Dd-YmPoSmWsy8v3BT1X1d1_5m7ts2TNz3yqikqo_6Bk8YJaf8CpuoOELH-ZPJSuIcCVY8IikcU9lBZyJpMLL3v2bLAmWHcJeTchE-pAGe8SszjQovRVAVesx60lKG3mRjhLnAvQ0FlsTHK3e-jaQ4_eWlu14-9N1jdRD-MNSy3rPJaUXXvr1tFqGZhxD-Z_0AlQpUig</recordid><startdate>20220131</startdate><enddate>20220131</enddate><creator>Haitz Sáez de Ocáriz Borde</creator><creator>Sondak, David</creator><creator>Protopapas, Pavlos</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220131</creationdate><title>Multi-Task Learning based Convolutional Models with Curriculum Learning for the Anisotropic Reynolds Stress Tensor in Turbulent Duct Flow</title><author>Haitz Sáez de Ocáriz Borde ; Sondak, David ; Protopapas, Pavlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25918317333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Computer architecture</topic><topic>Curricula</topic><topic>Fluid dynamics</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Reynolds stress</topic><topic>Tensors</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>online_resources</toplevel><creatorcontrib>Haitz Sáez de Ocáriz Borde</creatorcontrib><creatorcontrib>Sondak, David</creatorcontrib><creatorcontrib>Protopapas, Pavlos</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haitz Sáez de Ocáriz Borde</au><au>Sondak, David</au><au>Protopapas, Pavlos</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multi-Task Learning based Convolutional Models with Curriculum Learning for the Anisotropic Reynolds Stress Tensor in Turbulent Duct Flow</atitle><jtitle>arXiv.org</jtitle><date>2022-01-31</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The Reynolds-averaged Navier-Stokes (RANS) equations require accurate modeling of the anisotropic Reynolds stress tensor. Traditional closure models, while sophisticated, often only apply to restricted flow configurations. Researchers have started using machine learning approaches to tackle this problem by developing more general closure models informed by data. In this work we build upon recent convolutional neural network architectures used for turbulence modeling and propose a multi-task learning-based fully convolutional neural network that is able to accurately predict the normalized anisotropic Reynolds stress tensor for turbulent duct flows. Furthermore, we also explore the application of curriculum learning to data-driven turbulence modeling.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2591831733 |
source | Publicly Available Content Database |
subjects | Artificial neural networks Computer architecture Curricula Fluid dynamics Machine learning Mathematical analysis Modelling Neural networks Reynolds averaged Navier-Stokes method Reynolds stress Tensors Turbulence Turbulent flow |
title | Multi-Task Learning based Convolutional Models with Curriculum Learning for the Anisotropic Reynolds Stress Tensor in Turbulent Duct Flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multi-Task%20Learning%20based%20Convolutional%20Models%20with%20Curriculum%20Learning%20for%20the%20Anisotropic%20Reynolds%20Stress%20Tensor%20in%20Turbulent%20Duct%20Flow&rft.jtitle=arXiv.org&rft.au=Haitz%20S%C3%A1ez%20de%20Oc%C3%A1riz%20Borde&rft.date=2022-01-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2591831733%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25918317333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2591831733&rft_id=info:pmid/&rfr_iscdi=true |