Loading…

Multi-Task Learning based Convolutional Models with Curriculum Learning for the Anisotropic Reynolds Stress Tensor in Turbulent Duct Flow

The Reynolds-averaged Navier-Stokes (RANS) equations require accurate modeling of the anisotropic Reynolds stress tensor. Traditional closure models, while sophisticated, often only apply to restricted flow configurations. Researchers have started using machine learning approaches to tackle this pro...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-01
Main Authors: Haitz Sáez de Ocáriz Borde, Sondak, David, Protopapas, Pavlos
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Haitz Sáez de Ocáriz Borde
Sondak, David
Protopapas, Pavlos
description The Reynolds-averaged Navier-Stokes (RANS) equations require accurate modeling of the anisotropic Reynolds stress tensor. Traditional closure models, while sophisticated, often only apply to restricted flow configurations. Researchers have started using machine learning approaches to tackle this problem by developing more general closure models informed by data. In this work we build upon recent convolutional neural network architectures used for turbulence modeling and propose a multi-task learning-based fully convolutional neural network that is able to accurately predict the normalized anisotropic Reynolds stress tensor for turbulent duct flows. Furthermore, we also explore the application of curriculum learning to data-driven turbulence modeling.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2591831733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591831733</sourcerecordid><originalsourceid>FETCH-proquest_journals_25918317333</originalsourceid><addsrcrecordid>eNqNjrFKA0EQQBdBMGj-YcD64G43Z2Ipp8HCNHp92NxNzMZxJ87sGPwE_9oUgq3Va96Dd-YmPoSmWsy8v3BT1X1d1_5m7ts2TNz3yqikqo_6Bk8YJaf8CpuoOELH-ZPJSuIcCVY8IikcU9lBZyJpMLL3v2bLAmWHcJeTchE-pAGe8SszjQovRVAVesx60lKG3mRjhLnAvQ0FlsTHK3e-jaQ4_eWlu14-9N1jdRD-MNSy3rPJaUXXvr1tFqGZhxD-Z_0AlQpUig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591831733</pqid></control><display><type>article</type><title>Multi-Task Learning based Convolutional Models with Curriculum Learning for the Anisotropic Reynolds Stress Tensor in Turbulent Duct Flow</title><source>Publicly Available Content Database</source><creator>Haitz Sáez de Ocáriz Borde ; Sondak, David ; Protopapas, Pavlos</creator><creatorcontrib>Haitz Sáez de Ocáriz Borde ; Sondak, David ; Protopapas, Pavlos</creatorcontrib><description>The Reynolds-averaged Navier-Stokes (RANS) equations require accurate modeling of the anisotropic Reynolds stress tensor. Traditional closure models, while sophisticated, often only apply to restricted flow configurations. Researchers have started using machine learning approaches to tackle this problem by developing more general closure models informed by data. In this work we build upon recent convolutional neural network architectures used for turbulence modeling and propose a multi-task learning-based fully convolutional neural network that is able to accurately predict the normalized anisotropic Reynolds stress tensor for turbulent duct flows. Furthermore, we also explore the application of curriculum learning to data-driven turbulence modeling.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Computer architecture ; Curricula ; Fluid dynamics ; Machine learning ; Mathematical analysis ; Modelling ; Neural networks ; Reynolds averaged Navier-Stokes method ; Reynolds stress ; Tensors ; Turbulence ; Turbulent flow</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2591831733?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Haitz Sáez de Ocáriz Borde</creatorcontrib><creatorcontrib>Sondak, David</creatorcontrib><creatorcontrib>Protopapas, Pavlos</creatorcontrib><title>Multi-Task Learning based Convolutional Models with Curriculum Learning for the Anisotropic Reynolds Stress Tensor in Turbulent Duct Flow</title><title>arXiv.org</title><description>The Reynolds-averaged Navier-Stokes (RANS) equations require accurate modeling of the anisotropic Reynolds stress tensor. Traditional closure models, while sophisticated, often only apply to restricted flow configurations. Researchers have started using machine learning approaches to tackle this problem by developing more general closure models informed by data. In this work we build upon recent convolutional neural network architectures used for turbulence modeling and propose a multi-task learning-based fully convolutional neural network that is able to accurately predict the normalized anisotropic Reynolds stress tensor for turbulent duct flows. Furthermore, we also explore the application of curriculum learning to data-driven turbulence modeling.</description><subject>Artificial neural networks</subject><subject>Computer architecture</subject><subject>Curricula</subject><subject>Fluid dynamics</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Reynolds stress</subject><subject>Tensors</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjrFKA0EQQBdBMGj-YcD64G43Z2Ipp8HCNHp92NxNzMZxJ87sGPwE_9oUgq3Va96Dd-YmPoSmWsy8v3BT1X1d1_5m7ts2TNz3yqikqo_6Bk8YJaf8CpuoOELH-ZPJSuIcCVY8IikcU9lBZyJpMLL3v2bLAmWHcJeTchE-pAGe8SszjQovRVAVesx60lKG3mRjhLnAvQ0FlsTHK3e-jaQ4_eWlu14-9N1jdRD-MNSy3rPJaUXXvr1tFqGZhxD-Z_0AlQpUig</recordid><startdate>20220131</startdate><enddate>20220131</enddate><creator>Haitz Sáez de Ocáriz Borde</creator><creator>Sondak, David</creator><creator>Protopapas, Pavlos</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220131</creationdate><title>Multi-Task Learning based Convolutional Models with Curriculum Learning for the Anisotropic Reynolds Stress Tensor in Turbulent Duct Flow</title><author>Haitz Sáez de Ocáriz Borde ; Sondak, David ; Protopapas, Pavlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25918317333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Computer architecture</topic><topic>Curricula</topic><topic>Fluid dynamics</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Reynolds stress</topic><topic>Tensors</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>online_resources</toplevel><creatorcontrib>Haitz Sáez de Ocáriz Borde</creatorcontrib><creatorcontrib>Sondak, David</creatorcontrib><creatorcontrib>Protopapas, Pavlos</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haitz Sáez de Ocáriz Borde</au><au>Sondak, David</au><au>Protopapas, Pavlos</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multi-Task Learning based Convolutional Models with Curriculum Learning for the Anisotropic Reynolds Stress Tensor in Turbulent Duct Flow</atitle><jtitle>arXiv.org</jtitle><date>2022-01-31</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The Reynolds-averaged Navier-Stokes (RANS) equations require accurate modeling of the anisotropic Reynolds stress tensor. Traditional closure models, while sophisticated, often only apply to restricted flow configurations. Researchers have started using machine learning approaches to tackle this problem by developing more general closure models informed by data. In this work we build upon recent convolutional neural network architectures used for turbulence modeling and propose a multi-task learning-based fully convolutional neural network that is able to accurately predict the normalized anisotropic Reynolds stress tensor for turbulent duct flows. Furthermore, we also explore the application of curriculum learning to data-driven turbulence modeling.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2591831733
source Publicly Available Content Database
subjects Artificial neural networks
Computer architecture
Curricula
Fluid dynamics
Machine learning
Mathematical analysis
Modelling
Neural networks
Reynolds averaged Navier-Stokes method
Reynolds stress
Tensors
Turbulence
Turbulent flow
title Multi-Task Learning based Convolutional Models with Curriculum Learning for the Anisotropic Reynolds Stress Tensor in Turbulent Duct Flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multi-Task%20Learning%20based%20Convolutional%20Models%20with%20Curriculum%20Learning%20for%20the%20Anisotropic%20Reynolds%20Stress%20Tensor%20in%20Turbulent%20Duct%20Flow&rft.jtitle=arXiv.org&rft.au=Haitz%20S%C3%A1ez%20de%20Oc%C3%A1riz%20Borde&rft.date=2022-01-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2591831733%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25918317333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2591831733&rft_id=info:pmid/&rfr_iscdi=true