Loading…

PP-ShiTu: A Practical Lightweight Image Recognition System

In recent years, image recognition applications have developed rapidly. A large number of studies and techniques have emerged in different fields, such as face recognition, pedestrian and vehicle re-identification, landmark retrieval, and product recognition. In this paper, we propose a practical li...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-01
Main Authors: Shengyu Wei, Guo, Ruoyu, Cui, Cheng, Lu, Bin, Dong, Shuilong, Gao, Tingquan, Du, Yuning, Zhou, Ying, Lyu, Xueying, Liu, Qiwen, Hu, Xiaoguang, Yu, Dianhai, Ma, Yanjun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shengyu Wei
Guo, Ruoyu
Cui, Cheng
Lu, Bin
Dong, Shuilong
Gao, Tingquan
Du, Yuning
Zhou, Ying
Lyu, Xueying
Liu, Qiwen
Hu, Xiaoguang
Yu, Dianhai
Ma, Yanjun
description In recent years, image recognition applications have developed rapidly. A large number of studies and techniques have emerged in different fields, such as face recognition, pedestrian and vehicle re-identification, landmark retrieval, and product recognition. In this paper, we propose a practical lightweight image recognition system, named PP-ShiTu, consisting of the following 3 modules, mainbody detection, feature extraction and vector search. We introduce popular strategies including metric learning, deep hash, knowledge distillation and model quantization to improve accuracy and inference speed. With strategies above, PP-ShiTu works well in different scenarios with a set of models trained on a mixed dataset. Experiments on different datasets and benchmarks show that the system is widely effective in different domains of image recognition. All the above mentioned models are open-sourced and the code is available in the GitHub repository PaddleClas on PaddlePaddle.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2591839098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591839098</sourcerecordid><originalsourceid>FETCH-proquest_journals_25918390983</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCgjQDc7IDCm1UnBUCChKTC7JTE7MUfDJTM8oKU8FkQqeuYnpqQpBqcn56XmZJZn5eQrBlcUlqbk8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGppaGFsaWBpYUycKgBGxDYc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591839098</pqid></control><display><type>article</type><title>PP-ShiTu: A Practical Lightweight Image Recognition System</title><source>Publicly Available Content Database</source><creator>Shengyu Wei ; Guo, Ruoyu ; Cui, Cheng ; Lu, Bin ; Dong, Shuilong ; Gao, Tingquan ; Du, Yuning ; Zhou, Ying ; Lyu, Xueying ; Liu, Qiwen ; Hu, Xiaoguang ; Yu, Dianhai ; Ma, Yanjun</creator><creatorcontrib>Shengyu Wei ; Guo, Ruoyu ; Cui, Cheng ; Lu, Bin ; Dong, Shuilong ; Gao, Tingquan ; Du, Yuning ; Zhou, Ying ; Lyu, Xueying ; Liu, Qiwen ; Hu, Xiaoguang ; Yu, Dianhai ; Ma, Yanjun</creatorcontrib><description>In recent years, image recognition applications have developed rapidly. A large number of studies and techniques have emerged in different fields, such as face recognition, pedestrian and vehicle re-identification, landmark retrieval, and product recognition. In this paper, we propose a practical lightweight image recognition system, named PP-ShiTu, consisting of the following 3 modules, mainbody detection, feature extraction and vector search. We introduce popular strategies including metric learning, deep hash, knowledge distillation and model quantization to improve accuracy and inference speed. With strategies above, PP-ShiTu works well in different scenarios with a set of models trained on a mixed dataset. Experiments on different datasets and benchmarks show that the system is widely effective in different domains of image recognition. All the above mentioned models are open-sourced and the code is available in the GitHub repository PaddleClas on PaddlePaddle.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Distillation ; Face recognition ; Feature extraction ; Lightweight ; Object recognition ; Underwater exploration</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2591839098?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Shengyu Wei</creatorcontrib><creatorcontrib>Guo, Ruoyu</creatorcontrib><creatorcontrib>Cui, Cheng</creatorcontrib><creatorcontrib>Lu, Bin</creatorcontrib><creatorcontrib>Dong, Shuilong</creatorcontrib><creatorcontrib>Gao, Tingquan</creatorcontrib><creatorcontrib>Du, Yuning</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Lyu, Xueying</creatorcontrib><creatorcontrib>Liu, Qiwen</creatorcontrib><creatorcontrib>Hu, Xiaoguang</creatorcontrib><creatorcontrib>Yu, Dianhai</creatorcontrib><creatorcontrib>Ma, Yanjun</creatorcontrib><title>PP-ShiTu: A Practical Lightweight Image Recognition System</title><title>arXiv.org</title><description>In recent years, image recognition applications have developed rapidly. A large number of studies and techniques have emerged in different fields, such as face recognition, pedestrian and vehicle re-identification, landmark retrieval, and product recognition. In this paper, we propose a practical lightweight image recognition system, named PP-ShiTu, consisting of the following 3 modules, mainbody detection, feature extraction and vector search. We introduce popular strategies including metric learning, deep hash, knowledge distillation and model quantization to improve accuracy and inference speed. With strategies above, PP-ShiTu works well in different scenarios with a set of models trained on a mixed dataset. Experiments on different datasets and benchmarks show that the system is widely effective in different domains of image recognition. All the above mentioned models are open-sourced and the code is available in the GitHub repository PaddleClas on PaddlePaddle.</description><subject>Datasets</subject><subject>Distillation</subject><subject>Face recognition</subject><subject>Feature extraction</subject><subject>Lightweight</subject><subject>Object recognition</subject><subject>Underwater exploration</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCgjQDc7IDCm1UnBUCChKTC7JTE7MUfDJTM8oKU8FkQqeuYnpqQpBqcn56XmZJZn5eQrBlcUlqbk8DKxpiTnFqbxQmptB2c01xNlDt6Aov7A0tbgkPiu_tCgPKBVvZGppaGFsaWBpYUycKgBGxDYc</recordid><startdate>20220121</startdate><enddate>20220121</enddate><creator>Shengyu Wei</creator><creator>Guo, Ruoyu</creator><creator>Cui, Cheng</creator><creator>Lu, Bin</creator><creator>Dong, Shuilong</creator><creator>Gao, Tingquan</creator><creator>Du, Yuning</creator><creator>Zhou, Ying</creator><creator>Lyu, Xueying</creator><creator>Liu, Qiwen</creator><creator>Hu, Xiaoguang</creator><creator>Yu, Dianhai</creator><creator>Ma, Yanjun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220121</creationdate><title>PP-ShiTu: A Practical Lightweight Image Recognition System</title><author>Shengyu Wei ; Guo, Ruoyu ; Cui, Cheng ; Lu, Bin ; Dong, Shuilong ; Gao, Tingquan ; Du, Yuning ; Zhou, Ying ; Lyu, Xueying ; Liu, Qiwen ; Hu, Xiaoguang ; Yu, Dianhai ; Ma, Yanjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25918390983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Datasets</topic><topic>Distillation</topic><topic>Face recognition</topic><topic>Feature extraction</topic><topic>Lightweight</topic><topic>Object recognition</topic><topic>Underwater exploration</topic><toplevel>online_resources</toplevel><creatorcontrib>Shengyu Wei</creatorcontrib><creatorcontrib>Guo, Ruoyu</creatorcontrib><creatorcontrib>Cui, Cheng</creatorcontrib><creatorcontrib>Lu, Bin</creatorcontrib><creatorcontrib>Dong, Shuilong</creatorcontrib><creatorcontrib>Gao, Tingquan</creatorcontrib><creatorcontrib>Du, Yuning</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Lyu, Xueying</creatorcontrib><creatorcontrib>Liu, Qiwen</creatorcontrib><creatorcontrib>Hu, Xiaoguang</creatorcontrib><creatorcontrib>Yu, Dianhai</creatorcontrib><creatorcontrib>Ma, Yanjun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shengyu Wei</au><au>Guo, Ruoyu</au><au>Cui, Cheng</au><au>Lu, Bin</au><au>Dong, Shuilong</au><au>Gao, Tingquan</au><au>Du, Yuning</au><au>Zhou, Ying</au><au>Lyu, Xueying</au><au>Liu, Qiwen</au><au>Hu, Xiaoguang</au><au>Yu, Dianhai</au><au>Ma, Yanjun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>PP-ShiTu: A Practical Lightweight Image Recognition System</atitle><jtitle>arXiv.org</jtitle><date>2022-01-21</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In recent years, image recognition applications have developed rapidly. A large number of studies and techniques have emerged in different fields, such as face recognition, pedestrian and vehicle re-identification, landmark retrieval, and product recognition. In this paper, we propose a practical lightweight image recognition system, named PP-ShiTu, consisting of the following 3 modules, mainbody detection, feature extraction and vector search. We introduce popular strategies including metric learning, deep hash, knowledge distillation and model quantization to improve accuracy and inference speed. With strategies above, PP-ShiTu works well in different scenarios with a set of models trained on a mixed dataset. Experiments on different datasets and benchmarks show that the system is widely effective in different domains of image recognition. All the above mentioned models are open-sourced and the code is available in the GitHub repository PaddleClas on PaddlePaddle.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2591839098
source Publicly Available Content Database
subjects Datasets
Distillation
Face recognition
Feature extraction
Lightweight
Object recognition
Underwater exploration
title PP-ShiTu: A Practical Lightweight Image Recognition System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=PP-ShiTu:%20A%20Practical%20Lightweight%20Image%20Recognition%20System&rft.jtitle=arXiv.org&rft.au=Shengyu%20Wei&rft.date=2022-01-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2591839098%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25918390983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2591839098&rft_id=info:pmid/&rfr_iscdi=true