Loading…

On quadrature rules for solving Partial Differential Equations using Neural Networks

Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose different alternatives...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-10
Main Authors: Rivera, Jon A, Taylor, Jamie M, Omella, Ángel J, Pardo, David
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Rivera, Jon A
Taylor, Jamie M
Omella, Ángel J
Pardo, David
description Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose different alternatives to overcome them, namely: Monte Carlo methods, adaptive integration, polynomial approximations of the Neural Network output, and the inclusion of regularization terms in the loss. We also discuss the advantages and limitations of each proposed alternative. We advocate the use of Monte Carlo methods for high dimensions (above 3 or 4), and adaptive integration or polynomial approximations for low dimensions (3 or below). The use of regularization terms is a mathematically elegant alternative that is valid for any spacial dimension, however, it requires certain regularity assumptions on the solution and complex mathematical analysis when dealing with sophisticated Neural Networks.
doi_str_mv 10.48550/arxiv.2111.00217
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2591842756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591842756</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-95c92149cc8fc9eabf50affe20136a4c257d5d618ba7b11ef98e8f1f5019a6a73</originalsourceid><addsrcrecordid>eNotT8lOwzAUtJCQqEo_gJslzgl-dmzHR1TKIlUth9yrl8RGKVFM7bjw-ZjlNJrRLBpCboCVVS0lu8PwNZxLDgAlYxz0BVlwIaCoK86vyCrGI8u60lxKsSDNfqKnhH3AOQVLQxptpM4HGv14HqY3-ophHnCkD4NzNtjpl2xyZB78FGmKP6adTSHLOzt_-vAer8mlwzHa1T8uSfO4adbPxXb_9LK-3xYouSqM7AyHynRd7TpjsXWSYR7hDITCquNS97JXULeoWwDrTG1rB9kFBhVqsSS3f7UfwZ-SjfPh6FOY8uKBSwP5sJZKfAMUeFMs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591842756</pqid></control><display><type>article</type><title>On quadrature rules for solving Partial Differential Equations using Neural Networks</title><source>Publicly Available Content Database</source><creator>Rivera, Jon A ; Taylor, Jamie M ; Omella, Ángel J ; Pardo, David</creator><creatorcontrib>Rivera, Jon A ; Taylor, Jamie M ; Omella, Ángel J ; Pardo, David</creatorcontrib><description>Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose different alternatives to overcome them, namely: Monte Carlo methods, adaptive integration, polynomial approximations of the Neural Network output, and the inclusion of regularization terms in the loss. We also discuss the advantages and limitations of each proposed alternative. We advocate the use of Monte Carlo methods for high dimensions (above 3 or 4), and adaptive integration or polynomial approximations for low dimensions (3 or below). The use of regularization terms is a mathematically elegant alternative that is valid for any spacial dimension, however, it requires certain regularity assumptions on the solution and complex mathematical analysis when dealing with sophisticated Neural Networks.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2111.00217</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Mathematical analysis ; Monte Carlo simulation ; Neural networks ; Partial differential equations ; Polynomials ; Quadratures ; Regularization</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2591842756?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Rivera, Jon A</creatorcontrib><creatorcontrib>Taylor, Jamie M</creatorcontrib><creatorcontrib>Omella, Ángel J</creatorcontrib><creatorcontrib>Pardo, David</creatorcontrib><title>On quadrature rules for solving Partial Differential Equations using Neural Networks</title><title>arXiv.org</title><description>Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose different alternatives to overcome them, namely: Monte Carlo methods, adaptive integration, polynomial approximations of the Neural Network output, and the inclusion of regularization terms in the loss. We also discuss the advantages and limitations of each proposed alternative. We advocate the use of Monte Carlo methods for high dimensions (above 3 or 4), and adaptive integration or polynomial approximations for low dimensions (3 or below). The use of regularization terms is a mathematically elegant alternative that is valid for any spacial dimension, however, it requires certain regularity assumptions on the solution and complex mathematical analysis when dealing with sophisticated Neural Networks.</description><subject>Approximation</subject><subject>Mathematical analysis</subject><subject>Monte Carlo simulation</subject><subject>Neural networks</subject><subject>Partial differential equations</subject><subject>Polynomials</subject><subject>Quadratures</subject><subject>Regularization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotT8lOwzAUtJCQqEo_gJslzgl-dmzHR1TKIlUth9yrl8RGKVFM7bjw-ZjlNJrRLBpCboCVVS0lu8PwNZxLDgAlYxz0BVlwIaCoK86vyCrGI8u60lxKsSDNfqKnhH3AOQVLQxptpM4HGv14HqY3-ophHnCkD4NzNtjpl2xyZB78FGmKP6adTSHLOzt_-vAer8mlwzHa1T8uSfO4adbPxXb_9LK-3xYouSqM7AyHynRd7TpjsXWSYR7hDITCquNS97JXULeoWwDrTG1rB9kFBhVqsSS3f7UfwZ-SjfPh6FOY8uKBSwP5sJZKfAMUeFMs</recordid><startdate>20211030</startdate><enddate>20211030</enddate><creator>Rivera, Jon A</creator><creator>Taylor, Jamie M</creator><creator>Omella, Ángel J</creator><creator>Pardo, David</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20211030</creationdate><title>On quadrature rules for solving Partial Differential Equations using Neural Networks</title><author>Rivera, Jon A ; Taylor, Jamie M ; Omella, Ángel J ; Pardo, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-95c92149cc8fc9eabf50affe20136a4c257d5d618ba7b11ef98e8f1f5019a6a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Mathematical analysis</topic><topic>Monte Carlo simulation</topic><topic>Neural networks</topic><topic>Partial differential equations</topic><topic>Polynomials</topic><topic>Quadratures</topic><topic>Regularization</topic><toplevel>online_resources</toplevel><creatorcontrib>Rivera, Jon A</creatorcontrib><creatorcontrib>Taylor, Jamie M</creatorcontrib><creatorcontrib>Omella, Ángel J</creatorcontrib><creatorcontrib>Pardo, David</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivera, Jon A</au><au>Taylor, Jamie M</au><au>Omella, Ángel J</au><au>Pardo, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On quadrature rules for solving Partial Differential Equations using Neural Networks</atitle><jtitle>arXiv.org</jtitle><date>2021-10-30</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose different alternatives to overcome them, namely: Monte Carlo methods, adaptive integration, polynomial approximations of the Neural Network output, and the inclusion of regularization terms in the loss. We also discuss the advantages and limitations of each proposed alternative. We advocate the use of Monte Carlo methods for high dimensions (above 3 or 4), and adaptive integration or polynomial approximations for low dimensions (3 or below). The use of regularization terms is a mathematically elegant alternative that is valid for any spacial dimension, however, it requires certain regularity assumptions on the solution and complex mathematical analysis when dealing with sophisticated Neural Networks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2111.00217</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2591842756
source Publicly Available Content Database
subjects Approximation
Mathematical analysis
Monte Carlo simulation
Neural networks
Partial differential equations
Polynomials
Quadratures
Regularization
title On quadrature rules for solving Partial Differential Equations using Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20quadrature%20rules%20for%20solving%20Partial%20Differential%20Equations%20using%20Neural%20Networks&rft.jtitle=arXiv.org&rft.au=Rivera,%20Jon%20A&rft.date=2021-10-30&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2111.00217&rft_dat=%3Cproquest%3E2591842756%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-95c92149cc8fc9eabf50affe20136a4c257d5d618ba7b11ef98e8f1f5019a6a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2591842756&rft_id=info:pmid/&rfr_iscdi=true