Loading…
On quadrature rules for solving Partial Differential Equations using Neural Networks
Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose different alternatives...
Saved in:
Published in: | arXiv.org 2021-10 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Rivera, Jon A Taylor, Jamie M Omella, Ángel J Pardo, David |
description | Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose different alternatives to overcome them, namely: Monte Carlo methods, adaptive integration, polynomial approximations of the Neural Network output, and the inclusion of regularization terms in the loss. We also discuss the advantages and limitations of each proposed alternative. We advocate the use of Monte Carlo methods for high dimensions (above 3 or 4), and adaptive integration or polynomial approximations for low dimensions (3 or below). The use of regularization terms is a mathematically elegant alternative that is valid for any spacial dimension, however, it requires certain regularity assumptions on the solution and complex mathematical analysis when dealing with sophisticated Neural Networks. |
doi_str_mv | 10.48550/arxiv.2111.00217 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2591842756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591842756</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-95c92149cc8fc9eabf50affe20136a4c257d5d618ba7b11ef98e8f1f5019a6a73</originalsourceid><addsrcrecordid>eNotT8lOwzAUtJCQqEo_gJslzgl-dmzHR1TKIlUth9yrl8RGKVFM7bjw-ZjlNJrRLBpCboCVVS0lu8PwNZxLDgAlYxz0BVlwIaCoK86vyCrGI8u60lxKsSDNfqKnhH3AOQVLQxptpM4HGv14HqY3-ophHnCkD4NzNtjpl2xyZB78FGmKP6adTSHLOzt_-vAer8mlwzHa1T8uSfO4adbPxXb_9LK-3xYouSqM7AyHynRd7TpjsXWSYR7hDITCquNS97JXULeoWwDrTG1rB9kFBhVqsSS3f7UfwZ-SjfPh6FOY8uKBSwP5sJZKfAMUeFMs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2591842756</pqid></control><display><type>article</type><title>On quadrature rules for solving Partial Differential Equations using Neural Networks</title><source>Publicly Available Content Database</source><creator>Rivera, Jon A ; Taylor, Jamie M ; Omella, Ángel J ; Pardo, David</creator><creatorcontrib>Rivera, Jon A ; Taylor, Jamie M ; Omella, Ángel J ; Pardo, David</creatorcontrib><description>Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose different alternatives to overcome them, namely: Monte Carlo methods, adaptive integration, polynomial approximations of the Neural Network output, and the inclusion of regularization terms in the loss. We also discuss the advantages and limitations of each proposed alternative. We advocate the use of Monte Carlo methods for high dimensions (above 3 or 4), and adaptive integration or polynomial approximations for low dimensions (3 or below). The use of regularization terms is a mathematically elegant alternative that is valid for any spacial dimension, however, it requires certain regularity assumptions on the solution and complex mathematical analysis when dealing with sophisticated Neural Networks.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2111.00217</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Mathematical analysis ; Monte Carlo simulation ; Neural networks ; Partial differential equations ; Polynomials ; Quadratures ; Regularization</subject><ispartof>arXiv.org, 2021-10</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2591842756?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Rivera, Jon A</creatorcontrib><creatorcontrib>Taylor, Jamie M</creatorcontrib><creatorcontrib>Omella, Ángel J</creatorcontrib><creatorcontrib>Pardo, David</creatorcontrib><title>On quadrature rules for solving Partial Differential Equations using Neural Networks</title><title>arXiv.org</title><description>Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose different alternatives to overcome them, namely: Monte Carlo methods, adaptive integration, polynomial approximations of the Neural Network output, and the inclusion of regularization terms in the loss. We also discuss the advantages and limitations of each proposed alternative. We advocate the use of Monte Carlo methods for high dimensions (above 3 or 4), and adaptive integration or polynomial approximations for low dimensions (3 or below). The use of regularization terms is a mathematically elegant alternative that is valid for any spacial dimension, however, it requires certain regularity assumptions on the solution and complex mathematical analysis when dealing with sophisticated Neural Networks.</description><subject>Approximation</subject><subject>Mathematical analysis</subject><subject>Monte Carlo simulation</subject><subject>Neural networks</subject><subject>Partial differential equations</subject><subject>Polynomials</subject><subject>Quadratures</subject><subject>Regularization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotT8lOwzAUtJCQqEo_gJslzgl-dmzHR1TKIlUth9yrl8RGKVFM7bjw-ZjlNJrRLBpCboCVVS0lu8PwNZxLDgAlYxz0BVlwIaCoK86vyCrGI8u60lxKsSDNfqKnhH3AOQVLQxptpM4HGv14HqY3-ophHnCkD4NzNtjpl2xyZB78FGmKP6adTSHLOzt_-vAer8mlwzHa1T8uSfO4adbPxXb_9LK-3xYouSqM7AyHynRd7TpjsXWSYR7hDITCquNS97JXULeoWwDrTG1rB9kFBhVqsSS3f7UfwZ-SjfPh6FOY8uKBSwP5sJZKfAMUeFMs</recordid><startdate>20211030</startdate><enddate>20211030</enddate><creator>Rivera, Jon A</creator><creator>Taylor, Jamie M</creator><creator>Omella, Ángel J</creator><creator>Pardo, David</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20211030</creationdate><title>On quadrature rules for solving Partial Differential Equations using Neural Networks</title><author>Rivera, Jon A ; Taylor, Jamie M ; Omella, Ángel J ; Pardo, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-95c92149cc8fc9eabf50affe20136a4c257d5d618ba7b11ef98e8f1f5019a6a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Mathematical analysis</topic><topic>Monte Carlo simulation</topic><topic>Neural networks</topic><topic>Partial differential equations</topic><topic>Polynomials</topic><topic>Quadratures</topic><topic>Regularization</topic><toplevel>online_resources</toplevel><creatorcontrib>Rivera, Jon A</creatorcontrib><creatorcontrib>Taylor, Jamie M</creatorcontrib><creatorcontrib>Omella, Ángel J</creatorcontrib><creatorcontrib>Pardo, David</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivera, Jon A</au><au>Taylor, Jamie M</au><au>Omella, Ángel J</au><au>Pardo, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On quadrature rules for solving Partial Differential Equations using Neural Networks</atitle><jtitle>arXiv.org</jtitle><date>2021-10-30</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Neural Networks have been widely used to solve Partial Differential Equations. These methods require to approximate definite integrals using quadrature rules. Here, we illustrate via 1D numerical examples the quadrature problems that may arise in these applications and propose different alternatives to overcome them, namely: Monte Carlo methods, adaptive integration, polynomial approximations of the Neural Network output, and the inclusion of regularization terms in the loss. We also discuss the advantages and limitations of each proposed alternative. We advocate the use of Monte Carlo methods for high dimensions (above 3 or 4), and adaptive integration or polynomial approximations for low dimensions (3 or below). The use of regularization terms is a mathematically elegant alternative that is valid for any spacial dimension, however, it requires certain regularity assumptions on the solution and complex mathematical analysis when dealing with sophisticated Neural Networks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2111.00217</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2591842756 |
source | Publicly Available Content Database |
subjects | Approximation Mathematical analysis Monte Carlo simulation Neural networks Partial differential equations Polynomials Quadratures Regularization |
title | On quadrature rules for solving Partial Differential Equations using Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A45%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20quadrature%20rules%20for%20solving%20Partial%20Differential%20Equations%20using%20Neural%20Networks&rft.jtitle=arXiv.org&rft.au=Rivera,%20Jon%20A&rft.date=2021-10-30&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2111.00217&rft_dat=%3Cproquest%3E2591842756%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-95c92149cc8fc9eabf50affe20136a4c257d5d618ba7b11ef98e8f1f5019a6a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2591842756&rft_id=info:pmid/&rfr_iscdi=true |