Loading…

Energy poverty in Uganda: Evidence from a multidimensional approach

Energy poverty measurement has taken various approaches with the most preferred being Multidimensional in nature. This paper augments the multidimensional energy poverty measurement to estimate a national multidimensional energy poverty index for Uganda. It applies the M-Gamma method on data from th...

Full description

Saved in:
Bibliographic Details
Published in:Energy economics 2021-09, Vol.101, p.105445, Article 105445
Main Authors: Ssennono, Vincent Fred, Ntayi, Joseph M., Buyinza, Faisal, Wasswa, Francis, Aarakit, Sylvia Manjeri, Mukiza, Chris Ndatira
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-653f697916d6d6d04d43f98907052c46a2cb62ac0e9fdb3bc3e9804262ffdde83
cites cdi_FETCH-LOGICAL-c396t-653f697916d6d6d04d43f98907052c46a2cb62ac0e9fdb3bc3e9804262ffdde83
container_end_page
container_issue
container_start_page 105445
container_title Energy economics
container_volume 101
creator Ssennono, Vincent Fred
Ntayi, Joseph M.
Buyinza, Faisal
Wasswa, Francis
Aarakit, Sylvia Manjeri
Mukiza, Chris Ndatira
description Energy poverty measurement has taken various approaches with the most preferred being Multidimensional in nature. This paper augments the multidimensional energy poverty measurement to estimate a national multidimensional energy poverty index for Uganda. It applies the M-Gamma method on data from the 2018 National Electrification Survey (NES) which captures various aspects of energy poverty. Results show that, 66% of Ugandans are multidimensionally energy poor, 33% are severely energy poor and the average deprivation score is 51%. The multidimensional energy poverty index for Uganda (MEPI-U) is estimated at 0.33. Implying that, the proportion of the population that is multidimensionally energy poor is deprived in five or more indicators at the same time. This paper's computed MEPI-U suggests that, exclusion of context specific indicators over estimates multidimensional energy poverty. Further, results show that energy poverty does not follow a uniform distribution, the M-Gamma approach reveals high inequality distribution by residence, gender and regional location. Policies that seek to alleviate the energy deficit in Uganda should be multidimensional, comprehensive and should take into account energy poverty differences across subgroups. Affirmative action interventions targeting the rural areas should continue to be prioritised. •The existing Multidimensional energy poverty approach is augmented to capture inequality among the energy poor using the M-gamma method.•Exclusion of context specific indicators over estimates multidimensional energy poverty and thus underscores the superiority of multidimensional poverty estimates.•The distribution of the energy poor does not follow a uniform distribution. There are more deprivations in rural areas and among the female headed households.
doi_str_mv 10.1016/j.eneco.2021.105445
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2592349078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0140988321003339</els_id><sourcerecordid>2592349078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-653f697916d6d6d04d43f98907052c46a2cb62ac0e9fdb3bc3e9804262ffdde83</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoenjC7oxdO1ULytSoYsS0gcEumnWQpFGqUxsuZITyN_XrrsusxgY7p2ZexC6I3hOMBEP9RxasHFOMSXDpOK8OkMzIhesFESSczTDhONSScku0VXONca4EpWcoeWqhbQ7FV08QupPRWiLzc60zjwWq2Nw0FoofIpNYYrmsO-DCw20OcTW7AvTdSka-3WDLrzZZ7j969do87L6XL6V64_X9-XzurRMib4UFfNCLRQRbizMHWdeSYUXuKKWC0PtVlBjMSjvtmxrGSiJORXUe-dAsmt0P-0dzn4fIPe6joc0fJI1rRRlfFg1qtiksinmnMDrLoXGpJMmWI-0dK1_aemRlp5oDa6nyQVDgGOApLMNY3oXEtheuxj-9f8ASx1zPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592349078</pqid></control><display><type>article</type><title>Energy poverty in Uganda: Evidence from a multidimensional approach</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>ScienceDirect Freedom Collection 2022-2024</source><source>PAIS Index</source><creator>Ssennono, Vincent Fred ; Ntayi, Joseph M. ; Buyinza, Faisal ; Wasswa, Francis ; Aarakit, Sylvia Manjeri ; Mukiza, Chris Ndatira</creator><creatorcontrib>Ssennono, Vincent Fred ; Ntayi, Joseph M. ; Buyinza, Faisal ; Wasswa, Francis ; Aarakit, Sylvia Manjeri ; Mukiza, Chris Ndatira</creatorcontrib><description>Energy poverty measurement has taken various approaches with the most preferred being Multidimensional in nature. This paper augments the multidimensional energy poverty measurement to estimate a national multidimensional energy poverty index for Uganda. It applies the M-Gamma method on data from the 2018 National Electrification Survey (NES) which captures various aspects of energy poverty. Results show that, 66% of Ugandans are multidimensionally energy poor, 33% are severely energy poor and the average deprivation score is 51%. The multidimensional energy poverty index for Uganda (MEPI-U) is estimated at 0.33. Implying that, the proportion of the population that is multidimensionally energy poor is deprived in five or more indicators at the same time. This paper's computed MEPI-U suggests that, exclusion of context specific indicators over estimates multidimensional energy poverty. Further, results show that energy poverty does not follow a uniform distribution, the M-Gamma approach reveals high inequality distribution by residence, gender and regional location. Policies that seek to alleviate the energy deficit in Uganda should be multidimensional, comprehensive and should take into account energy poverty differences across subgroups. Affirmative action interventions targeting the rural areas should continue to be prioritised. •The existing Multidimensional energy poverty approach is augmented to capture inequality among the energy poor using the M-gamma method.•Exclusion of context specific indicators over estimates multidimensional energy poverty and thus underscores the superiority of multidimensional poverty estimates.•The distribution of the energy poor does not follow a uniform distribution. There are more deprivations in rural areas and among the female headed households.</description><identifier>ISSN: 0140-9883</identifier><identifier>EISSN: 1873-6181</identifier><identifier>DOI: 10.1016/j.eneco.2021.105445</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Affirmative action ; Deprivation ; Electrification ; Energy ; Energy economics ; Energy poverty ; Incidence ; Indexes ; Indicators ; Inequality ; Intensity ; Measurement ; Multidimensional approach ; Multidimensional energy poverty ; Poverty ; Rural areas ; Rural communities ; Subgroups ; Uganda ; Uniform distribution</subject><ispartof>Energy economics, 2021-09, Vol.101, p.105445, Article 105445</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Sep 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-653f697916d6d6d04d43f98907052c46a2cb62ac0e9fdb3bc3e9804262ffdde83</citedby><cites>FETCH-LOGICAL-c396t-653f697916d6d6d04d43f98907052c46a2cb62ac0e9fdb3bc3e9804262ffdde83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27866,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>Ssennono, Vincent Fred</creatorcontrib><creatorcontrib>Ntayi, Joseph M.</creatorcontrib><creatorcontrib>Buyinza, Faisal</creatorcontrib><creatorcontrib>Wasswa, Francis</creatorcontrib><creatorcontrib>Aarakit, Sylvia Manjeri</creatorcontrib><creatorcontrib>Mukiza, Chris Ndatira</creatorcontrib><title>Energy poverty in Uganda: Evidence from a multidimensional approach</title><title>Energy economics</title><description>Energy poverty measurement has taken various approaches with the most preferred being Multidimensional in nature. This paper augments the multidimensional energy poverty measurement to estimate a national multidimensional energy poverty index for Uganda. It applies the M-Gamma method on data from the 2018 National Electrification Survey (NES) which captures various aspects of energy poverty. Results show that, 66% of Ugandans are multidimensionally energy poor, 33% are severely energy poor and the average deprivation score is 51%. The multidimensional energy poverty index for Uganda (MEPI-U) is estimated at 0.33. Implying that, the proportion of the population that is multidimensionally energy poor is deprived in five or more indicators at the same time. This paper's computed MEPI-U suggests that, exclusion of context specific indicators over estimates multidimensional energy poverty. Further, results show that energy poverty does not follow a uniform distribution, the M-Gamma approach reveals high inequality distribution by residence, gender and regional location. Policies that seek to alleviate the energy deficit in Uganda should be multidimensional, comprehensive and should take into account energy poverty differences across subgroups. Affirmative action interventions targeting the rural areas should continue to be prioritised. •The existing Multidimensional energy poverty approach is augmented to capture inequality among the energy poor using the M-gamma method.•Exclusion of context specific indicators over estimates multidimensional energy poverty and thus underscores the superiority of multidimensional poverty estimates.•The distribution of the energy poor does not follow a uniform distribution. There are more deprivations in rural areas and among the female headed households.</description><subject>Affirmative action</subject><subject>Deprivation</subject><subject>Electrification</subject><subject>Energy</subject><subject>Energy economics</subject><subject>Energy poverty</subject><subject>Incidence</subject><subject>Indexes</subject><subject>Indicators</subject><subject>Inequality</subject><subject>Intensity</subject><subject>Measurement</subject><subject>Multidimensional approach</subject><subject>Multidimensional energy poverty</subject><subject>Poverty</subject><subject>Rural areas</subject><subject>Rural communities</subject><subject>Subgroups</subject><subject>Uganda</subject><subject>Uniform distribution</subject><issn>0140-9883</issn><issn>1873-6181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><sourceid>8BJ</sourceid><recordid>eNp9kMtqwzAQRUVpoenjC7oxdO1ULytSoYsS0gcEumnWQpFGqUxsuZITyN_XrrsusxgY7p2ZexC6I3hOMBEP9RxasHFOMSXDpOK8OkMzIhesFESSczTDhONSScku0VXONca4EpWcoeWqhbQ7FV08QupPRWiLzc60zjwWq2Nw0FoofIpNYYrmsO-DCw20OcTW7AvTdSka-3WDLrzZZ7j969do87L6XL6V64_X9-XzurRMib4UFfNCLRQRbizMHWdeSYUXuKKWC0PtVlBjMSjvtmxrGSiJORXUe-dAsmt0P-0dzn4fIPe6joc0fJI1rRRlfFg1qtiksinmnMDrLoXGpJMmWI-0dK1_aemRlp5oDa6nyQVDgGOApLMNY3oXEtheuxj-9f8ASx1zPw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ssennono, Vincent Fred</creator><creator>Ntayi, Joseph M.</creator><creator>Buyinza, Faisal</creator><creator>Wasswa, Francis</creator><creator>Aarakit, Sylvia Manjeri</creator><creator>Mukiza, Chris Ndatira</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TA</scope><scope>7TQ</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>DHY</scope><scope>DON</scope><scope>FQK</scope><scope>JBE</scope><scope>JG9</scope><scope>SOI</scope></search><sort><creationdate>20210901</creationdate><title>Energy poverty in Uganda: Evidence from a multidimensional approach</title><author>Ssennono, Vincent Fred ; Ntayi, Joseph M. ; Buyinza, Faisal ; Wasswa, Francis ; Aarakit, Sylvia Manjeri ; Mukiza, Chris Ndatira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-653f697916d6d6d04d43f98907052c46a2cb62ac0e9fdb3bc3e9804262ffdde83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Affirmative action</topic><topic>Deprivation</topic><topic>Electrification</topic><topic>Energy</topic><topic>Energy economics</topic><topic>Energy poverty</topic><topic>Incidence</topic><topic>Indexes</topic><topic>Indicators</topic><topic>Inequality</topic><topic>Intensity</topic><topic>Measurement</topic><topic>Multidimensional approach</topic><topic>Multidimensional energy poverty</topic><topic>Poverty</topic><topic>Rural areas</topic><topic>Rural communities</topic><topic>Subgroups</topic><topic>Uganda</topic><topic>Uniform distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ssennono, Vincent Fred</creatorcontrib><creatorcontrib>Ntayi, Joseph M.</creatorcontrib><creatorcontrib>Buyinza, Faisal</creatorcontrib><creatorcontrib>Wasswa, Francis</creatorcontrib><creatorcontrib>Aarakit, Sylvia Manjeri</creatorcontrib><creatorcontrib>Mukiza, Chris Ndatira</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Materials Business File</collection><collection>PAIS Index</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Energy economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ssennono, Vincent Fred</au><au>Ntayi, Joseph M.</au><au>Buyinza, Faisal</au><au>Wasswa, Francis</au><au>Aarakit, Sylvia Manjeri</au><au>Mukiza, Chris Ndatira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy poverty in Uganda: Evidence from a multidimensional approach</atitle><jtitle>Energy economics</jtitle><date>2021-09-01</date><risdate>2021</risdate><volume>101</volume><spage>105445</spage><pages>105445-</pages><artnum>105445</artnum><issn>0140-9883</issn><eissn>1873-6181</eissn><abstract>Energy poverty measurement has taken various approaches with the most preferred being Multidimensional in nature. This paper augments the multidimensional energy poverty measurement to estimate a national multidimensional energy poverty index for Uganda. It applies the M-Gamma method on data from the 2018 National Electrification Survey (NES) which captures various aspects of energy poverty. Results show that, 66% of Ugandans are multidimensionally energy poor, 33% are severely energy poor and the average deprivation score is 51%. The multidimensional energy poverty index for Uganda (MEPI-U) is estimated at 0.33. Implying that, the proportion of the population that is multidimensionally energy poor is deprived in five or more indicators at the same time. This paper's computed MEPI-U suggests that, exclusion of context specific indicators over estimates multidimensional energy poverty. Further, results show that energy poverty does not follow a uniform distribution, the M-Gamma approach reveals high inequality distribution by residence, gender and regional location. Policies that seek to alleviate the energy deficit in Uganda should be multidimensional, comprehensive and should take into account energy poverty differences across subgroups. Affirmative action interventions targeting the rural areas should continue to be prioritised. •The existing Multidimensional energy poverty approach is augmented to capture inequality among the energy poor using the M-gamma method.•Exclusion of context specific indicators over estimates multidimensional energy poverty and thus underscores the superiority of multidimensional poverty estimates.•The distribution of the energy poor does not follow a uniform distribution. There are more deprivations in rural areas and among the female headed households.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.eneco.2021.105445</doi></addata></record>
fulltext fulltext
identifier ISSN: 0140-9883
ispartof Energy economics, 2021-09, Vol.101, p.105445, Article 105445
issn 0140-9883
1873-6181
language eng
recordid cdi_proquest_journals_2592349078
source International Bibliography of the Social Sciences (IBSS); ScienceDirect Freedom Collection 2022-2024; PAIS Index
subjects Affirmative action
Deprivation
Electrification
Energy
Energy economics
Energy poverty
Incidence
Indexes
Indicators
Inequality
Intensity
Measurement
Multidimensional approach
Multidimensional energy poverty
Poverty
Rural areas
Rural communities
Subgroups
Uganda
Uniform distribution
title Energy poverty in Uganda: Evidence from a multidimensional approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20poverty%20in%20Uganda:%20Evidence%20from%20a%20multidimensional%20approach&rft.jtitle=Energy%20economics&rft.au=Ssennono,%20Vincent%20Fred&rft.date=2021-09-01&rft.volume=101&rft.spage=105445&rft.pages=105445-&rft.artnum=105445&rft.issn=0140-9883&rft.eissn=1873-6181&rft_id=info:doi/10.1016/j.eneco.2021.105445&rft_dat=%3Cproquest_cross%3E2592349078%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-653f697916d6d6d04d43f98907052c46a2cb62ac0e9fdb3bc3e9804262ffdde83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2592349078&rft_id=info:pmid/&rfr_iscdi=true