Loading…
Towards combinational relation linking over knowledge graphs
Given a knowledge graph and a natural language phrase, relation linking aims to find relations (predicates or properties) from the underlying knowledge graph to match the phrase. It is very useful in many applications, such as natural language question answering, personalized recommendation and text...
Saved in:
Published in: | World wide web (Bussum) 2021-11, Vol.24 (6), p.1975-1994 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c270t-1d51fb05073531619c63e14779efa1b973b73e0f1bafefb7ca68775386df129b3 |
container_end_page | 1994 |
container_issue | 6 |
container_start_page | 1975 |
container_title | World wide web (Bussum) |
container_volume | 24 |
creator | Zheng, Weiguo Zhang, Mei Yang, Deqing Zhang, Zeyang Han, Weidong |
description | Given a knowledge graph and a natural language phrase, relation linking aims to find relations (predicates or properties) from the underlying knowledge graph to match the phrase. It is very useful in many applications, such as natural language question answering, personalized recommendation and text summarization. However, the previous relation linking algorithms usually produce a single relation for the input phrase and pay little attention to the more general and challenging problem, i.e., combinational relation linking that extracts a subgraph pattern to match the compound phrase (e.g. father-in-law). In this paper, we focus on the task of combinational relation linking over knowledge graphs. To resolve the problem, we define several elementary meta patterns which can be used to build any combinational relation. Then we design a systematic method based on the data-driven relation assembly technique, which is performed under the guidance of meta patterns. To enhance the system’s understanding ability, we introduce external knowledge during the linking process. Finally, extensive experiments over the real knowledge graph confirm the effectiveness of the proposed method. |
doi_str_mv | 10.1007/s11280-021-00951-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2592768227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2592768227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1d51fb05073531619c63e14779efa1b973b73e0f1bafefb7ca68775386df129b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWKt_wNOC5-j7Js1mA16k-AUFLxW8hexusm673dSktfXfG7uCN08zh5lheAi5RLhGAHkTEVkBFBhSACWQ7o_ICIXkFCfIj5PnRZ68eDslZzEuACDnCkfkdu53JtQxq_yqbHuzaX1vuizY7mCzru2Xbd9k_tOGbNn7XWfrxmZNMOv3eE5OnOmivfjVMXl9uJ9Pn-js5fF5ejejFZOwoVgLdCUIkFxwzFFVObc4kVJZZ7BUkpeSW3BYGmddKSuTF1KK9Lh2yFTJx-Rq2F0H_7G1caMXfhvSz6iZUEzmBWMypdiQqoKPMVin16FdmfClEfQPJT1Q0omSPlDS-1TiQymmcN_Y8Df9T-sb4lhqzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592768227</pqid></control><display><type>article</type><title>Towards combinational relation linking over knowledge graphs</title><source>Springer Link</source><creator>Zheng, Weiguo ; Zhang, Mei ; Yang, Deqing ; Zhang, Zeyang ; Han, Weidong</creator><creatorcontrib>Zheng, Weiguo ; Zhang, Mei ; Yang, Deqing ; Zhang, Zeyang ; Han, Weidong</creatorcontrib><description>Given a knowledge graph and a natural language phrase, relation linking aims to find relations (predicates or properties) from the underlying knowledge graph to match the phrase. It is very useful in many applications, such as natural language question answering, personalized recommendation and text summarization. However, the previous relation linking algorithms usually produce a single relation for the input phrase and pay little attention to the more general and challenging problem, i.e., combinational relation linking that extracts a subgraph pattern to match the compound phrase (e.g. father-in-law). In this paper, we focus on the task of combinational relation linking over knowledge graphs. To resolve the problem, we define several elementary meta patterns which can be used to build any combinational relation. Then we design a systematic method based on the data-driven relation assembly technique, which is performed under the guidance of meta patterns. To enhance the system’s understanding ability, we introduce external knowledge during the linking process. Finally, extensive experiments over the real knowledge graph confirm the effectiveness of the proposed method.</description><identifier>ISSN: 1386-145X</identifier><identifier>EISSN: 1573-1413</identifier><identifier>DOI: 10.1007/s11280-021-00951-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Database Management ; Graph theory ; Graphs ; Information Systems Applications (incl.Internet) ; Knowledge representation ; Natural language ; Operating Systems</subject><ispartof>World wide web (Bussum), 2021-11, Vol.24 (6), p.1975-1994</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1d51fb05073531619c63e14779efa1b973b73e0f1bafefb7ca68775386df129b3</cites><orcidid>0000-0003-1200-7368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Zheng, Weiguo</creatorcontrib><creatorcontrib>Zhang, Mei</creatorcontrib><creatorcontrib>Yang, Deqing</creatorcontrib><creatorcontrib>Zhang, Zeyang</creatorcontrib><creatorcontrib>Han, Weidong</creatorcontrib><title>Towards combinational relation linking over knowledge graphs</title><title>World wide web (Bussum)</title><addtitle>World Wide Web</addtitle><description>Given a knowledge graph and a natural language phrase, relation linking aims to find relations (predicates or properties) from the underlying knowledge graph to match the phrase. It is very useful in many applications, such as natural language question answering, personalized recommendation and text summarization. However, the previous relation linking algorithms usually produce a single relation for the input phrase and pay little attention to the more general and challenging problem, i.e., combinational relation linking that extracts a subgraph pattern to match the compound phrase (e.g. father-in-law). In this paper, we focus on the task of combinational relation linking over knowledge graphs. To resolve the problem, we define several elementary meta patterns which can be used to build any combinational relation. Then we design a systematic method based on the data-driven relation assembly technique, which is performed under the guidance of meta patterns. To enhance the system’s understanding ability, we introduce external knowledge during the linking process. Finally, extensive experiments over the real knowledge graph confirm the effectiveness of the proposed method.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Database Management</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Knowledge representation</subject><subject>Natural language</subject><subject>Operating Systems</subject><issn>1386-145X</issn><issn>1573-1413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEYhIMoWKt_wNOC5-j7Js1mA16k-AUFLxW8hexusm673dSktfXfG7uCN08zh5lheAi5RLhGAHkTEVkBFBhSACWQ7o_ICIXkFCfIj5PnRZ68eDslZzEuACDnCkfkdu53JtQxq_yqbHuzaX1vuizY7mCzru2Xbd9k_tOGbNn7XWfrxmZNMOv3eE5OnOmivfjVMXl9uJ9Pn-js5fF5ejejFZOwoVgLdCUIkFxwzFFVObc4kVJZZ7BUkpeSW3BYGmddKSuTF1KK9Lh2yFTJx-Rq2F0H_7G1caMXfhvSz6iZUEzmBWMypdiQqoKPMVin16FdmfClEfQPJT1Q0omSPlDS-1TiQymmcN_Y8Df9T-sb4lhqzw</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Zheng, Weiguo</creator><creator>Zhang, Mei</creator><creator>Yang, Deqing</creator><creator>Zhang, Zeyang</creator><creator>Han, Weidong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1200-7368</orcidid></search><sort><creationdate>20211101</creationdate><title>Towards combinational relation linking over knowledge graphs</title><author>Zheng, Weiguo ; Zhang, Mei ; Yang, Deqing ; Zhang, Zeyang ; Han, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1d51fb05073531619c63e14779efa1b973b73e0f1bafefb7ca68775386df129b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Database Management</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Knowledge representation</topic><topic>Natural language</topic><topic>Operating Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Weiguo</creatorcontrib><creatorcontrib>Zhang, Mei</creatorcontrib><creatorcontrib>Yang, Deqing</creatorcontrib><creatorcontrib>Zhang, Zeyang</creatorcontrib><creatorcontrib>Han, Weidong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>World wide web (Bussum)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Weiguo</au><au>Zhang, Mei</au><au>Yang, Deqing</au><au>Zhang, Zeyang</au><au>Han, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards combinational relation linking over knowledge graphs</atitle><jtitle>World wide web (Bussum)</jtitle><stitle>World Wide Web</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>24</volume><issue>6</issue><spage>1975</spage><epage>1994</epage><pages>1975-1994</pages><issn>1386-145X</issn><eissn>1573-1413</eissn><abstract>Given a knowledge graph and a natural language phrase, relation linking aims to find relations (predicates or properties) from the underlying knowledge graph to match the phrase. It is very useful in many applications, such as natural language question answering, personalized recommendation and text summarization. However, the previous relation linking algorithms usually produce a single relation for the input phrase and pay little attention to the more general and challenging problem, i.e., combinational relation linking that extracts a subgraph pattern to match the compound phrase (e.g. father-in-law). In this paper, we focus on the task of combinational relation linking over knowledge graphs. To resolve the problem, we define several elementary meta patterns which can be used to build any combinational relation. Then we design a systematic method based on the data-driven relation assembly technique, which is performed under the guidance of meta patterns. To enhance the system’s understanding ability, we introduce external knowledge during the linking process. Finally, extensive experiments over the real knowledge graph confirm the effectiveness of the proposed method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11280-021-00951-x</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1200-7368</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-145X |
ispartof | World wide web (Bussum), 2021-11, Vol.24 (6), p.1975-1994 |
issn | 1386-145X 1573-1413 |
language | eng |
recordid | cdi_proquest_journals_2592768227 |
source | Springer Link |
subjects | Algorithms Computer Science Database Management Graph theory Graphs Information Systems Applications (incl.Internet) Knowledge representation Natural language Operating Systems |
title | Towards combinational relation linking over knowledge graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20combinational%20relation%20linking%20over%20knowledge%20graphs&rft.jtitle=World%20wide%20web%20(Bussum)&rft.au=Zheng,%20Weiguo&rft.date=2021-11-01&rft.volume=24&rft.issue=6&rft.spage=1975&rft.epage=1994&rft.pages=1975-1994&rft.issn=1386-145X&rft.eissn=1573-1413&rft_id=info:doi/10.1007/s11280-021-00951-x&rft_dat=%3Cproquest_cross%3E2592768227%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-1d51fb05073531619c63e14779efa1b973b73e0f1bafefb7ca68775386df129b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2592768227&rft_id=info:pmid/&rfr_iscdi=true |