Loading…

Towards combinational relation linking over knowledge graphs

Given a knowledge graph and a natural language phrase, relation linking aims to find relations (predicates or properties) from the underlying knowledge graph to match the phrase. It is very useful in many applications, such as natural language question answering, personalized recommendation and text...

Full description

Saved in:
Bibliographic Details
Published in:World wide web (Bussum) 2021-11, Vol.24 (6), p.1975-1994
Main Authors: Zheng, Weiguo, Zhang, Mei, Yang, Deqing, Zhang, Zeyang, Han, Weidong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c270t-1d51fb05073531619c63e14779efa1b973b73e0f1bafefb7ca68775386df129b3
container_end_page 1994
container_issue 6
container_start_page 1975
container_title World wide web (Bussum)
container_volume 24
creator Zheng, Weiguo
Zhang, Mei
Yang, Deqing
Zhang, Zeyang
Han, Weidong
description Given a knowledge graph and a natural language phrase, relation linking aims to find relations (predicates or properties) from the underlying knowledge graph to match the phrase. It is very useful in many applications, such as natural language question answering, personalized recommendation and text summarization. However, the previous relation linking algorithms usually produce a single relation for the input phrase and pay little attention to the more general and challenging problem, i.e., combinational relation linking that extracts a subgraph pattern to match the compound phrase (e.g. father-in-law). In this paper, we focus on the task of combinational relation linking over knowledge graphs. To resolve the problem, we define several elementary meta patterns which can be used to build any combinational relation. Then we design a systematic method based on the data-driven relation assembly technique, which is performed under the guidance of meta patterns. To enhance the system’s understanding ability, we introduce external knowledge during the linking process. Finally, extensive experiments over the real knowledge graph confirm the effectiveness of the proposed method.
doi_str_mv 10.1007/s11280-021-00951-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2592768227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2592768227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1d51fb05073531619c63e14779efa1b973b73e0f1bafefb7ca68775386df129b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWKt_wNOC5-j7Js1mA16k-AUFLxW8hexusm673dSktfXfG7uCN08zh5lheAi5RLhGAHkTEVkBFBhSACWQ7o_ICIXkFCfIj5PnRZ68eDslZzEuACDnCkfkdu53JtQxq_yqbHuzaX1vuizY7mCzru2Xbd9k_tOGbNn7XWfrxmZNMOv3eE5OnOmivfjVMXl9uJ9Pn-js5fF5ejejFZOwoVgLdCUIkFxwzFFVObc4kVJZZ7BUkpeSW3BYGmddKSuTF1KK9Lh2yFTJx-Rq2F0H_7G1caMXfhvSz6iZUEzmBWMypdiQqoKPMVin16FdmfClEfQPJT1Q0omSPlDS-1TiQymmcN_Y8Df9T-sb4lhqzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592768227</pqid></control><display><type>article</type><title>Towards combinational relation linking over knowledge graphs</title><source>Springer Link</source><creator>Zheng, Weiguo ; Zhang, Mei ; Yang, Deqing ; Zhang, Zeyang ; Han, Weidong</creator><creatorcontrib>Zheng, Weiguo ; Zhang, Mei ; Yang, Deqing ; Zhang, Zeyang ; Han, Weidong</creatorcontrib><description>Given a knowledge graph and a natural language phrase, relation linking aims to find relations (predicates or properties) from the underlying knowledge graph to match the phrase. It is very useful in many applications, such as natural language question answering, personalized recommendation and text summarization. However, the previous relation linking algorithms usually produce a single relation for the input phrase and pay little attention to the more general and challenging problem, i.e., combinational relation linking that extracts a subgraph pattern to match the compound phrase (e.g. father-in-law). In this paper, we focus on the task of combinational relation linking over knowledge graphs. To resolve the problem, we define several elementary meta patterns which can be used to build any combinational relation. Then we design a systematic method based on the data-driven relation assembly technique, which is performed under the guidance of meta patterns. To enhance the system’s understanding ability, we introduce external knowledge during the linking process. Finally, extensive experiments over the real knowledge graph confirm the effectiveness of the proposed method.</description><identifier>ISSN: 1386-145X</identifier><identifier>EISSN: 1573-1413</identifier><identifier>DOI: 10.1007/s11280-021-00951-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Database Management ; Graph theory ; Graphs ; Information Systems Applications (incl.Internet) ; Knowledge representation ; Natural language ; Operating Systems</subject><ispartof>World wide web (Bussum), 2021-11, Vol.24 (6), p.1975-1994</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1d51fb05073531619c63e14779efa1b973b73e0f1bafefb7ca68775386df129b3</cites><orcidid>0000-0003-1200-7368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Zheng, Weiguo</creatorcontrib><creatorcontrib>Zhang, Mei</creatorcontrib><creatorcontrib>Yang, Deqing</creatorcontrib><creatorcontrib>Zhang, Zeyang</creatorcontrib><creatorcontrib>Han, Weidong</creatorcontrib><title>Towards combinational relation linking over knowledge graphs</title><title>World wide web (Bussum)</title><addtitle>World Wide Web</addtitle><description>Given a knowledge graph and a natural language phrase, relation linking aims to find relations (predicates or properties) from the underlying knowledge graph to match the phrase. It is very useful in many applications, such as natural language question answering, personalized recommendation and text summarization. However, the previous relation linking algorithms usually produce a single relation for the input phrase and pay little attention to the more general and challenging problem, i.e., combinational relation linking that extracts a subgraph pattern to match the compound phrase (e.g. father-in-law). In this paper, we focus on the task of combinational relation linking over knowledge graphs. To resolve the problem, we define several elementary meta patterns which can be used to build any combinational relation. Then we design a systematic method based on the data-driven relation assembly technique, which is performed under the guidance of meta patterns. To enhance the system’s understanding ability, we introduce external knowledge during the linking process. Finally, extensive experiments over the real knowledge graph confirm the effectiveness of the proposed method.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Database Management</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Knowledge representation</subject><subject>Natural language</subject><subject>Operating Systems</subject><issn>1386-145X</issn><issn>1573-1413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEYhIMoWKt_wNOC5-j7Js1mA16k-AUFLxW8hexusm673dSktfXfG7uCN08zh5lheAi5RLhGAHkTEVkBFBhSACWQ7o_ICIXkFCfIj5PnRZ68eDslZzEuACDnCkfkdu53JtQxq_yqbHuzaX1vuizY7mCzru2Xbd9k_tOGbNn7XWfrxmZNMOv3eE5OnOmivfjVMXl9uJ9Pn-js5fF5ejejFZOwoVgLdCUIkFxwzFFVObc4kVJZZ7BUkpeSW3BYGmddKSuTF1KK9Lh2yFTJx-Rq2F0H_7G1caMXfhvSz6iZUEzmBWMypdiQqoKPMVin16FdmfClEfQPJT1Q0omSPlDS-1TiQymmcN_Y8Df9T-sb4lhqzw</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Zheng, Weiguo</creator><creator>Zhang, Mei</creator><creator>Yang, Deqing</creator><creator>Zhang, Zeyang</creator><creator>Han, Weidong</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1200-7368</orcidid></search><sort><creationdate>20211101</creationdate><title>Towards combinational relation linking over knowledge graphs</title><author>Zheng, Weiguo ; Zhang, Mei ; Yang, Deqing ; Zhang, Zeyang ; Han, Weidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1d51fb05073531619c63e14779efa1b973b73e0f1bafefb7ca68775386df129b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Database Management</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Knowledge representation</topic><topic>Natural language</topic><topic>Operating Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Weiguo</creatorcontrib><creatorcontrib>Zhang, Mei</creatorcontrib><creatorcontrib>Yang, Deqing</creatorcontrib><creatorcontrib>Zhang, Zeyang</creatorcontrib><creatorcontrib>Han, Weidong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>World wide web (Bussum)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Weiguo</au><au>Zhang, Mei</au><au>Yang, Deqing</au><au>Zhang, Zeyang</au><au>Han, Weidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards combinational relation linking over knowledge graphs</atitle><jtitle>World wide web (Bussum)</jtitle><stitle>World Wide Web</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>24</volume><issue>6</issue><spage>1975</spage><epage>1994</epage><pages>1975-1994</pages><issn>1386-145X</issn><eissn>1573-1413</eissn><abstract>Given a knowledge graph and a natural language phrase, relation linking aims to find relations (predicates or properties) from the underlying knowledge graph to match the phrase. It is very useful in many applications, such as natural language question answering, personalized recommendation and text summarization. However, the previous relation linking algorithms usually produce a single relation for the input phrase and pay little attention to the more general and challenging problem, i.e., combinational relation linking that extracts a subgraph pattern to match the compound phrase (e.g. father-in-law). In this paper, we focus on the task of combinational relation linking over knowledge graphs. To resolve the problem, we define several elementary meta patterns which can be used to build any combinational relation. Then we design a systematic method based on the data-driven relation assembly technique, which is performed under the guidance of meta patterns. To enhance the system’s understanding ability, we introduce external knowledge during the linking process. Finally, extensive experiments over the real knowledge graph confirm the effectiveness of the proposed method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11280-021-00951-x</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1200-7368</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1386-145X
ispartof World wide web (Bussum), 2021-11, Vol.24 (6), p.1975-1994
issn 1386-145X
1573-1413
language eng
recordid cdi_proquest_journals_2592768227
source Springer Link
subjects Algorithms
Computer Science
Database Management
Graph theory
Graphs
Information Systems Applications (incl.Internet)
Knowledge representation
Natural language
Operating Systems
title Towards combinational relation linking over knowledge graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20combinational%20relation%20linking%20over%20knowledge%20graphs&rft.jtitle=World%20wide%20web%20(Bussum)&rft.au=Zheng,%20Weiguo&rft.date=2021-11-01&rft.volume=24&rft.issue=6&rft.spage=1975&rft.epage=1994&rft.pages=1975-1994&rft.issn=1386-145X&rft.eissn=1573-1413&rft_id=info:doi/10.1007/s11280-021-00951-x&rft_dat=%3Cproquest_cross%3E2592768227%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c270t-1d51fb05073531619c63e14779efa1b973b73e0f1bafefb7ca68775386df129b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2592768227&rft_id=info:pmid/&rfr_iscdi=true