Loading…

Hydraulic Crack Growth Dynamics from Ultrasound Transmission Monitoring in Laboratory Experiments

—Acoustic transmission data obtained in the laboratory experiment are used to identify stages of hydraulic fracture initiation, growth, and filling with a fracturing fluid. The laboratory setup allows for performing experiments with porous saturated samples made of artificial materials, with a diame...

Full description

Saved in:
Bibliographic Details
Published in:Izvestiya. Physics of the solid earth 2021-09, Vol.57 (5), p.671-685
Main Authors: Turuntaev, S. B., Zenchenko, E. V., Zenchenko, P. E., Trimonova, M. A., Baryshnikov, N. A., Novikova, E. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-a78f821b4250178039859d9a0dcf62603c57fe395a09873ef66dff30aed568803
cites cdi_FETCH-LOGICAL-c316t-a78f821b4250178039859d9a0dcf62603c57fe395a09873ef66dff30aed568803
container_end_page 685
container_issue 5
container_start_page 671
container_title Izvestiya. Physics of the solid earth
container_volume 57
creator Turuntaev, S. B.
Zenchenko, E. V.
Zenchenko, P. E.
Trimonova, M. A.
Baryshnikov, N. A.
Novikova, E. V.
description —Acoustic transmission data obtained in the laboratory experiment are used to identify stages of hydraulic fracture initiation, growth, and filling with a fracturing fluid. The laboratory setup allows for performing experiments with porous saturated samples made of artificial materials, with a diameter of 430 mm and height 70 mm. The model material was a mixture of gypsum and cement; the sample was saturated with water solution of gypsum and loaded by vertical and two independent horizontal stresses. Fracture was created by constant-rate injection of a viscous fluid through a cased hole in the center of the sample. Hydraulic fracture (HF) was monitored using ultrasonic pulses transmitted through the sample. The comparison of amplitude variations of ultrasonic pulses and injection pressure indicates that HF crack propagation initiates at lower pressure than maximum; HF crack grows faster than is filled with a fluid; after the crack volume is filled up with a fluid, fracture aperture expands. Once the injection stops, the crack closes when pressure in the wellbore decreases due to fluid leakage into the sample. It is shown that if the principal compressive stresses reorient, a secondary hydraulic fracture can appear provided that the primary fracture is perpendicular and secondary parallel to the well axis.
doi_str_mv 10.1134/S1069351321050207
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2593104019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593104019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a78f821b4250178039859d9a0dcf62603c57fe395a09873ef66dff30aed568803</originalsourceid><addsrcrecordid>eNp1UD1PwzAQtRBIlMIPYLPEHDjbsROPqECLVMRAO0duYoNLYwc7EeTf46pIDIjp7vQ-7u4hdEngmhCW37wQEJJxwigBDhSKIzQhnPNMcBDHqU9wtsdP0VmMW4A8Z1JOkFqMTVDDztZ4FlT9jufBf_Zv-G50qrV1xCb4Fq93fVDRD67Bq6BcbG2M1jv85J3tfbDuFVuHl2rjg0rziO-_Oh1sq10fz9GJUbuoL37qFK0f7lezRbZ8nj_ObpdZzYjoM1WUpqRkk1MOpCiByZLLRipoaiOoAFbzwmgmuQJZFkwbIRpjGCjdcFEm_hRdHXy74D8GHftq64fg0sqKcskI5EBkYpEDqw4-xqBN1aU7VRgrAtU-yepPkklDD5rY7V_V4df5f9E3Ic91dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593104019</pqid></control><display><type>article</type><title>Hydraulic Crack Growth Dynamics from Ultrasound Transmission Monitoring in Laboratory Experiments</title><source>Springer Nature</source><creator>Turuntaev, S. B. ; Zenchenko, E. V. ; Zenchenko, P. E. ; Trimonova, M. A. ; Baryshnikov, N. A. ; Novikova, E. V.</creator><creatorcontrib>Turuntaev, S. B. ; Zenchenko, E. V. ; Zenchenko, P. E. ; Trimonova, M. A. ; Baryshnikov, N. A. ; Novikova, E. V.</creatorcontrib><description>—Acoustic transmission data obtained in the laboratory experiment are used to identify stages of hydraulic fracture initiation, growth, and filling with a fracturing fluid. The laboratory setup allows for performing experiments with porous saturated samples made of artificial materials, with a diameter of 430 mm and height 70 mm. The model material was a mixture of gypsum and cement; the sample was saturated with water solution of gypsum and loaded by vertical and two independent horizontal stresses. Fracture was created by constant-rate injection of a viscous fluid through a cased hole in the center of the sample. Hydraulic fracture (HF) was monitored using ultrasonic pulses transmitted through the sample. The comparison of amplitude variations of ultrasonic pulses and injection pressure indicates that HF crack propagation initiates at lower pressure than maximum; HF crack grows faster than is filled with a fluid; after the crack volume is filled up with a fluid, fracture aperture expands. Once the injection stops, the crack closes when pressure in the wellbore decreases due to fluid leakage into the sample. It is shown that if the principal compressive stresses reorient, a secondary hydraulic fracture can appear provided that the primary fracture is perpendicular and secondary parallel to the well axis.</description><identifier>ISSN: 1069-3513</identifier><identifier>EISSN: 1555-6506</identifier><identifier>DOI: 10.1134/S1069351321050207</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Compressive properties ; Crack initiation ; Crack propagation ; Earth and Environmental Science ; Earth Sciences ; Fracture mechanics ; Geophysics/Geodesy ; Gypsum ; Hydraulic fracturing ; Hydraulics ; Injection ; Laboratories ; Laboratory experiments ; Pressure ; Sound transmission ; Stresses ; Vertical loads ; Viscous fluids</subject><ispartof>Izvestiya. Physics of the solid earth, 2021-09, Vol.57 (5), p.671-685</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 1069-3513, Izvestiya, Physics of the Solid Earth, 2021, Vol. 57, No. 5, pp. 671–685. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Fizika Zemli, 2021, No. 5, pp. 104–119.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a78f821b4250178039859d9a0dcf62603c57fe395a09873ef66dff30aed568803</citedby><cites>FETCH-LOGICAL-c316t-a78f821b4250178039859d9a0dcf62603c57fe395a09873ef66dff30aed568803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Turuntaev, S. B.</creatorcontrib><creatorcontrib>Zenchenko, E. V.</creatorcontrib><creatorcontrib>Zenchenko, P. E.</creatorcontrib><creatorcontrib>Trimonova, M. A.</creatorcontrib><creatorcontrib>Baryshnikov, N. A.</creatorcontrib><creatorcontrib>Novikova, E. V.</creatorcontrib><title>Hydraulic Crack Growth Dynamics from Ultrasound Transmission Monitoring in Laboratory Experiments</title><title>Izvestiya. Physics of the solid earth</title><addtitle>Izv., Phys. Solid Earth</addtitle><description>—Acoustic transmission data obtained in the laboratory experiment are used to identify stages of hydraulic fracture initiation, growth, and filling with a fracturing fluid. The laboratory setup allows for performing experiments with porous saturated samples made of artificial materials, with a diameter of 430 mm and height 70 mm. The model material was a mixture of gypsum and cement; the sample was saturated with water solution of gypsum and loaded by vertical and two independent horizontal stresses. Fracture was created by constant-rate injection of a viscous fluid through a cased hole in the center of the sample. Hydraulic fracture (HF) was monitored using ultrasonic pulses transmitted through the sample. The comparison of amplitude variations of ultrasonic pulses and injection pressure indicates that HF crack propagation initiates at lower pressure than maximum; HF crack grows faster than is filled with a fluid; after the crack volume is filled up with a fluid, fracture aperture expands. Once the injection stops, the crack closes when pressure in the wellbore decreases due to fluid leakage into the sample. It is shown that if the principal compressive stresses reorient, a secondary hydraulic fracture can appear provided that the primary fracture is perpendicular and secondary parallel to the well axis.</description><subject>Compressive properties</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fracture mechanics</subject><subject>Geophysics/Geodesy</subject><subject>Gypsum</subject><subject>Hydraulic fracturing</subject><subject>Hydraulics</subject><subject>Injection</subject><subject>Laboratories</subject><subject>Laboratory experiments</subject><subject>Pressure</subject><subject>Sound transmission</subject><subject>Stresses</subject><subject>Vertical loads</subject><subject>Viscous fluids</subject><issn>1069-3513</issn><issn>1555-6506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UD1PwzAQtRBIlMIPYLPEHDjbsROPqECLVMRAO0duYoNLYwc7EeTf46pIDIjp7vQ-7u4hdEngmhCW37wQEJJxwigBDhSKIzQhnPNMcBDHqU9wtsdP0VmMW4A8Z1JOkFqMTVDDztZ4FlT9jufBf_Zv-G50qrV1xCb4Fq93fVDRD67Bq6BcbG2M1jv85J3tfbDuFVuHl2rjg0rziO-_Oh1sq10fz9GJUbuoL37qFK0f7lezRbZ8nj_ObpdZzYjoM1WUpqRkk1MOpCiByZLLRipoaiOoAFbzwmgmuQJZFkwbIRpjGCjdcFEm_hRdHXy74D8GHftq64fg0sqKcskI5EBkYpEDqw4-xqBN1aU7VRgrAtU-yepPkklDD5rY7V_V4df5f9E3Ic91dA</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Turuntaev, S. B.</creator><creator>Zenchenko, E. V.</creator><creator>Zenchenko, P. E.</creator><creator>Trimonova, M. A.</creator><creator>Baryshnikov, N. A.</creator><creator>Novikova, E. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20210901</creationdate><title>Hydraulic Crack Growth Dynamics from Ultrasound Transmission Monitoring in Laboratory Experiments</title><author>Turuntaev, S. B. ; Zenchenko, E. V. ; Zenchenko, P. E. ; Trimonova, M. A. ; Baryshnikov, N. A. ; Novikova, E. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a78f821b4250178039859d9a0dcf62603c57fe395a09873ef66dff30aed568803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Compressive properties</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fracture mechanics</topic><topic>Geophysics/Geodesy</topic><topic>Gypsum</topic><topic>Hydraulic fracturing</topic><topic>Hydraulics</topic><topic>Injection</topic><topic>Laboratories</topic><topic>Laboratory experiments</topic><topic>Pressure</topic><topic>Sound transmission</topic><topic>Stresses</topic><topic>Vertical loads</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turuntaev, S. B.</creatorcontrib><creatorcontrib>Zenchenko, E. V.</creatorcontrib><creatorcontrib>Zenchenko, P. E.</creatorcontrib><creatorcontrib>Trimonova, M. A.</creatorcontrib><creatorcontrib>Baryshnikov, N. A.</creatorcontrib><creatorcontrib>Novikova, E. V.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Izvestiya. Physics of the solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turuntaev, S. B.</au><au>Zenchenko, E. V.</au><au>Zenchenko, P. E.</au><au>Trimonova, M. A.</au><au>Baryshnikov, N. A.</au><au>Novikova, E. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydraulic Crack Growth Dynamics from Ultrasound Transmission Monitoring in Laboratory Experiments</atitle><jtitle>Izvestiya. Physics of the solid earth</jtitle><stitle>Izv., Phys. Solid Earth</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>57</volume><issue>5</issue><spage>671</spage><epage>685</epage><pages>671-685</pages><issn>1069-3513</issn><eissn>1555-6506</eissn><abstract>—Acoustic transmission data obtained in the laboratory experiment are used to identify stages of hydraulic fracture initiation, growth, and filling with a fracturing fluid. The laboratory setup allows for performing experiments with porous saturated samples made of artificial materials, with a diameter of 430 mm and height 70 mm. The model material was a mixture of gypsum and cement; the sample was saturated with water solution of gypsum and loaded by vertical and two independent horizontal stresses. Fracture was created by constant-rate injection of a viscous fluid through a cased hole in the center of the sample. Hydraulic fracture (HF) was monitored using ultrasonic pulses transmitted through the sample. The comparison of amplitude variations of ultrasonic pulses and injection pressure indicates that HF crack propagation initiates at lower pressure than maximum; HF crack grows faster than is filled with a fluid; after the crack volume is filled up with a fluid, fracture aperture expands. Once the injection stops, the crack closes when pressure in the wellbore decreases due to fluid leakage into the sample. It is shown that if the principal compressive stresses reorient, a secondary hydraulic fracture can appear provided that the primary fracture is perpendicular and secondary parallel to the well axis.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1069351321050207</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1069-3513
ispartof Izvestiya. Physics of the solid earth, 2021-09, Vol.57 (5), p.671-685
issn 1069-3513
1555-6506
language eng
recordid cdi_proquest_journals_2593104019
source Springer Nature
subjects Compressive properties
Crack initiation
Crack propagation
Earth and Environmental Science
Earth Sciences
Fracture mechanics
Geophysics/Geodesy
Gypsum
Hydraulic fracturing
Hydraulics
Injection
Laboratories
Laboratory experiments
Pressure
Sound transmission
Stresses
Vertical loads
Viscous fluids
title Hydraulic Crack Growth Dynamics from Ultrasound Transmission Monitoring in Laboratory Experiments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydraulic%20Crack%20Growth%20Dynamics%20from%20Ultrasound%20Transmission%20Monitoring%20in%20Laboratory%20Experiments&rft.jtitle=Izvestiya.%20Physics%20of%20the%20solid%20earth&rft.au=Turuntaev,%20S.%20B.&rft.date=2021-09-01&rft.volume=57&rft.issue=5&rft.spage=671&rft.epage=685&rft.pages=671-685&rft.issn=1069-3513&rft.eissn=1555-6506&rft_id=info:doi/10.1134/S1069351321050207&rft_dat=%3Cproquest_cross%3E2593104019%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-a78f821b4250178039859d9a0dcf62603c57fe395a09873ef66dff30aed568803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2593104019&rft_id=info:pmid/&rfr_iscdi=true