Loading…
Hydraulic Crack Growth Dynamics from Ultrasound Transmission Monitoring in Laboratory Experiments
—Acoustic transmission data obtained in the laboratory experiment are used to identify stages of hydraulic fracture initiation, growth, and filling with a fracturing fluid. The laboratory setup allows for performing experiments with porous saturated samples made of artificial materials, with a diame...
Saved in:
Published in: | Izvestiya. Physics of the solid earth 2021-09, Vol.57 (5), p.671-685 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-a78f821b4250178039859d9a0dcf62603c57fe395a09873ef66dff30aed568803 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-a78f821b4250178039859d9a0dcf62603c57fe395a09873ef66dff30aed568803 |
container_end_page | 685 |
container_issue | 5 |
container_start_page | 671 |
container_title | Izvestiya. Physics of the solid earth |
container_volume | 57 |
creator | Turuntaev, S. B. Zenchenko, E. V. Zenchenko, P. E. Trimonova, M. A. Baryshnikov, N. A. Novikova, E. V. |
description | —Acoustic transmission data obtained in the laboratory experiment are used to identify stages of hydraulic fracture initiation, growth, and filling with a fracturing fluid. The laboratory setup allows for performing experiments with porous saturated samples made of artificial materials, with a diameter of 430 mm and height 70 mm. The model material was a mixture of gypsum and cement; the sample was saturated with water solution of gypsum and loaded by vertical and two independent horizontal stresses. Fracture was created by constant-rate injection of a viscous fluid through a cased hole in the center of the sample. Hydraulic fracture (HF) was monitored using ultrasonic pulses transmitted through the sample. The comparison of amplitude variations of ultrasonic pulses and injection pressure indicates that HF crack propagation initiates at lower pressure than maximum; HF crack grows faster than is filled with a fluid; after the crack volume is filled up with a fluid, fracture aperture expands. Once the injection stops, the crack closes when pressure in the wellbore decreases due to fluid leakage into the sample. It is shown that if the principal compressive stresses reorient, a secondary hydraulic fracture can appear provided that the primary fracture is perpendicular and secondary parallel to the well axis. |
doi_str_mv | 10.1134/S1069351321050207 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2593104019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593104019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a78f821b4250178039859d9a0dcf62603c57fe395a09873ef66dff30aed568803</originalsourceid><addsrcrecordid>eNp1UD1PwzAQtRBIlMIPYLPEHDjbsROPqECLVMRAO0duYoNLYwc7EeTf46pIDIjp7vQ-7u4hdEngmhCW37wQEJJxwigBDhSKIzQhnPNMcBDHqU9wtsdP0VmMW4A8Z1JOkFqMTVDDztZ4FlT9jufBf_Zv-G50qrV1xCb4Fq93fVDRD67Bq6BcbG2M1jv85J3tfbDuFVuHl2rjg0rziO-_Oh1sq10fz9GJUbuoL37qFK0f7lezRbZ8nj_ObpdZzYjoM1WUpqRkk1MOpCiByZLLRipoaiOoAFbzwmgmuQJZFkwbIRpjGCjdcFEm_hRdHXy74D8GHftq64fg0sqKcskI5EBkYpEDqw4-xqBN1aU7VRgrAtU-yepPkklDD5rY7V_V4df5f9E3Ic91dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593104019</pqid></control><display><type>article</type><title>Hydraulic Crack Growth Dynamics from Ultrasound Transmission Monitoring in Laboratory Experiments</title><source>Springer Nature</source><creator>Turuntaev, S. B. ; Zenchenko, E. V. ; Zenchenko, P. E. ; Trimonova, M. A. ; Baryshnikov, N. A. ; Novikova, E. V.</creator><creatorcontrib>Turuntaev, S. B. ; Zenchenko, E. V. ; Zenchenko, P. E. ; Trimonova, M. A. ; Baryshnikov, N. A. ; Novikova, E. V.</creatorcontrib><description>—Acoustic transmission data obtained in the laboratory experiment are used to identify stages of hydraulic fracture initiation, growth, and filling with a fracturing fluid. The laboratory setup allows for performing experiments with porous saturated samples made of artificial materials, with a diameter of 430 mm and height 70 mm. The model material was a mixture of gypsum and cement; the sample was saturated with water solution of gypsum and loaded by vertical and two independent horizontal stresses. Fracture was created by constant-rate injection of a viscous fluid through a cased hole in the center of the sample. Hydraulic fracture (HF) was monitored using ultrasonic pulses transmitted through the sample. The comparison of amplitude variations of ultrasonic pulses and injection pressure indicates that HF crack propagation initiates at lower pressure than maximum; HF crack grows faster than is filled with a fluid; after the crack volume is filled up with a fluid, fracture aperture expands. Once the injection stops, the crack closes when pressure in the wellbore decreases due to fluid leakage into the sample. It is shown that if the principal compressive stresses reorient, a secondary hydraulic fracture can appear provided that the primary fracture is perpendicular and secondary parallel to the well axis.</description><identifier>ISSN: 1069-3513</identifier><identifier>EISSN: 1555-6506</identifier><identifier>DOI: 10.1134/S1069351321050207</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Compressive properties ; Crack initiation ; Crack propagation ; Earth and Environmental Science ; Earth Sciences ; Fracture mechanics ; Geophysics/Geodesy ; Gypsum ; Hydraulic fracturing ; Hydraulics ; Injection ; Laboratories ; Laboratory experiments ; Pressure ; Sound transmission ; Stresses ; Vertical loads ; Viscous fluids</subject><ispartof>Izvestiya. Physics of the solid earth, 2021-09, Vol.57 (5), p.671-685</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 1069-3513, Izvestiya, Physics of the Solid Earth, 2021, Vol. 57, No. 5, pp. 671–685. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Fizika Zemli, 2021, No. 5, pp. 104–119.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a78f821b4250178039859d9a0dcf62603c57fe395a09873ef66dff30aed568803</citedby><cites>FETCH-LOGICAL-c316t-a78f821b4250178039859d9a0dcf62603c57fe395a09873ef66dff30aed568803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Turuntaev, S. B.</creatorcontrib><creatorcontrib>Zenchenko, E. V.</creatorcontrib><creatorcontrib>Zenchenko, P. E.</creatorcontrib><creatorcontrib>Trimonova, M. A.</creatorcontrib><creatorcontrib>Baryshnikov, N. A.</creatorcontrib><creatorcontrib>Novikova, E. V.</creatorcontrib><title>Hydraulic Crack Growth Dynamics from Ultrasound Transmission Monitoring in Laboratory Experiments</title><title>Izvestiya. Physics of the solid earth</title><addtitle>Izv., Phys. Solid Earth</addtitle><description>—Acoustic transmission data obtained in the laboratory experiment are used to identify stages of hydraulic fracture initiation, growth, and filling with a fracturing fluid. The laboratory setup allows for performing experiments with porous saturated samples made of artificial materials, with a diameter of 430 mm and height 70 mm. The model material was a mixture of gypsum and cement; the sample was saturated with water solution of gypsum and loaded by vertical and two independent horizontal stresses. Fracture was created by constant-rate injection of a viscous fluid through a cased hole in the center of the sample. Hydraulic fracture (HF) was monitored using ultrasonic pulses transmitted through the sample. The comparison of amplitude variations of ultrasonic pulses and injection pressure indicates that HF crack propagation initiates at lower pressure than maximum; HF crack grows faster than is filled with a fluid; after the crack volume is filled up with a fluid, fracture aperture expands. Once the injection stops, the crack closes when pressure in the wellbore decreases due to fluid leakage into the sample. It is shown that if the principal compressive stresses reorient, a secondary hydraulic fracture can appear provided that the primary fracture is perpendicular and secondary parallel to the well axis.</description><subject>Compressive properties</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fracture mechanics</subject><subject>Geophysics/Geodesy</subject><subject>Gypsum</subject><subject>Hydraulic fracturing</subject><subject>Hydraulics</subject><subject>Injection</subject><subject>Laboratories</subject><subject>Laboratory experiments</subject><subject>Pressure</subject><subject>Sound transmission</subject><subject>Stresses</subject><subject>Vertical loads</subject><subject>Viscous fluids</subject><issn>1069-3513</issn><issn>1555-6506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UD1PwzAQtRBIlMIPYLPEHDjbsROPqECLVMRAO0duYoNLYwc7EeTf46pIDIjp7vQ-7u4hdEngmhCW37wQEJJxwigBDhSKIzQhnPNMcBDHqU9wtsdP0VmMW4A8Z1JOkFqMTVDDztZ4FlT9jufBf_Zv-G50qrV1xCb4Fq93fVDRD67Bq6BcbG2M1jv85J3tfbDuFVuHl2rjg0rziO-_Oh1sq10fz9GJUbuoL37qFK0f7lezRbZ8nj_ObpdZzYjoM1WUpqRkk1MOpCiByZLLRipoaiOoAFbzwmgmuQJZFkwbIRpjGCjdcFEm_hRdHXy74D8GHftq64fg0sqKcskI5EBkYpEDqw4-xqBN1aU7VRgrAtU-yepPkklDD5rY7V_V4df5f9E3Ic91dA</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Turuntaev, S. B.</creator><creator>Zenchenko, E. V.</creator><creator>Zenchenko, P. E.</creator><creator>Trimonova, M. A.</creator><creator>Baryshnikov, N. A.</creator><creator>Novikova, E. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20210901</creationdate><title>Hydraulic Crack Growth Dynamics from Ultrasound Transmission Monitoring in Laboratory Experiments</title><author>Turuntaev, S. B. ; Zenchenko, E. V. ; Zenchenko, P. E. ; Trimonova, M. A. ; Baryshnikov, N. A. ; Novikova, E. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a78f821b4250178039859d9a0dcf62603c57fe395a09873ef66dff30aed568803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Compressive properties</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fracture mechanics</topic><topic>Geophysics/Geodesy</topic><topic>Gypsum</topic><topic>Hydraulic fracturing</topic><topic>Hydraulics</topic><topic>Injection</topic><topic>Laboratories</topic><topic>Laboratory experiments</topic><topic>Pressure</topic><topic>Sound transmission</topic><topic>Stresses</topic><topic>Vertical loads</topic><topic>Viscous fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turuntaev, S. B.</creatorcontrib><creatorcontrib>Zenchenko, E. V.</creatorcontrib><creatorcontrib>Zenchenko, P. E.</creatorcontrib><creatorcontrib>Trimonova, M. A.</creatorcontrib><creatorcontrib>Baryshnikov, N. A.</creatorcontrib><creatorcontrib>Novikova, E. V.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Izvestiya. Physics of the solid earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turuntaev, S. B.</au><au>Zenchenko, E. V.</au><au>Zenchenko, P. E.</au><au>Trimonova, M. A.</au><au>Baryshnikov, N. A.</au><au>Novikova, E. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydraulic Crack Growth Dynamics from Ultrasound Transmission Monitoring in Laboratory Experiments</atitle><jtitle>Izvestiya. Physics of the solid earth</jtitle><stitle>Izv., Phys. Solid Earth</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>57</volume><issue>5</issue><spage>671</spage><epage>685</epage><pages>671-685</pages><issn>1069-3513</issn><eissn>1555-6506</eissn><abstract>—Acoustic transmission data obtained in the laboratory experiment are used to identify stages of hydraulic fracture initiation, growth, and filling with a fracturing fluid. The laboratory setup allows for performing experiments with porous saturated samples made of artificial materials, with a diameter of 430 mm and height 70 mm. The model material was a mixture of gypsum and cement; the sample was saturated with water solution of gypsum and loaded by vertical and two independent horizontal stresses. Fracture was created by constant-rate injection of a viscous fluid through a cased hole in the center of the sample. Hydraulic fracture (HF) was monitored using ultrasonic pulses transmitted through the sample. The comparison of amplitude variations of ultrasonic pulses and injection pressure indicates that HF crack propagation initiates at lower pressure than maximum; HF crack grows faster than is filled with a fluid; after the crack volume is filled up with a fluid, fracture aperture expands. Once the injection stops, the crack closes when pressure in the wellbore decreases due to fluid leakage into the sample. It is shown that if the principal compressive stresses reorient, a secondary hydraulic fracture can appear provided that the primary fracture is perpendicular and secondary parallel to the well axis.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1069351321050207</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1069-3513 |
ispartof | Izvestiya. Physics of the solid earth, 2021-09, Vol.57 (5), p.671-685 |
issn | 1069-3513 1555-6506 |
language | eng |
recordid | cdi_proquest_journals_2593104019 |
source | Springer Nature |
subjects | Compressive properties Crack initiation Crack propagation Earth and Environmental Science Earth Sciences Fracture mechanics Geophysics/Geodesy Gypsum Hydraulic fracturing Hydraulics Injection Laboratories Laboratory experiments Pressure Sound transmission Stresses Vertical loads Viscous fluids |
title | Hydraulic Crack Growth Dynamics from Ultrasound Transmission Monitoring in Laboratory Experiments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydraulic%20Crack%20Growth%20Dynamics%20from%20Ultrasound%20Transmission%20Monitoring%20in%20Laboratory%20Experiments&rft.jtitle=Izvestiya.%20Physics%20of%20the%20solid%20earth&rft.au=Turuntaev,%20S.%20B.&rft.date=2021-09-01&rft.volume=57&rft.issue=5&rft.spage=671&rft.epage=685&rft.pages=671-685&rft.issn=1069-3513&rft.eissn=1555-6506&rft_id=info:doi/10.1134/S1069351321050207&rft_dat=%3Cproquest_cross%3E2593104019%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-a78f821b4250178039859d9a0dcf62603c57fe395a09873ef66dff30aed568803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2593104019&rft_id=info:pmid/&rfr_iscdi=true |