Loading…
How carbonate dissolution facilitates sediment-hosted Zn-Pb mineralization
Most of the world's Zn and Pb is extracted from sediment-hosted Zn-Pb deposits. The Zn-Pb deposits hosted in carbonate rocks are hypothesized to form by mixing of acidic metal-bearing brines with reduced sulfur-bearing fluids while dissolving sedimentary carbonate. To test the role of carbonate...
Saved in:
Published in: | Geology (Boulder) 2021-11, Vol.49 (11), p.1363-1368 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a348t-e461f434079873e5397fe4316f7a44ba8fbb4b4671fc3cb14c0b07c8254351463 |
---|---|
cites | cdi_FETCH-LOGICAL-a348t-e461f434079873e5397fe4316f7a44ba8fbb4b4671fc3cb14c0b07c8254351463 |
container_end_page | 1368 |
container_issue | 11 |
container_start_page | 1363 |
container_title | Geology (Boulder) |
container_volume | 49 |
creator | Liu, Weihua Spinks, Sam C Glenn, Matthew MacRae, Colin Pearce, Mark A |
description | Most of the world's Zn and Pb is extracted from sediment-hosted Zn-Pb deposits. The Zn-Pb deposits hosted in carbonate rocks are hypothesized to form by mixing of acidic metal-bearing brines with reduced sulfur-bearing fluids while dissolving sedimentary carbonate. To test the role of carbonate in this process, we conducted hydrothermal experiments simulating ore formation by reacting Zn ± Pb ± Ba-bearing brines with H2S and SO42- produced by native sulfur, with and without carbonate minerals (calcite or dolomite crystals), at 200°C and water-saturated pressure. Sphalerite, galena, and barite (or anhydrite) crystals formed only when carbonate was present in the experiment, accompanied by carbonate dissolution. The textures of sphalerite clusters are similar to those observed in ancient and modern hydrothermal deposits. Thermodynamic modeling at 150°C and 250°C demonstrates that mixing of metal-rich brines and H2S causes most of the Zn in solution to precipitate as sphalerite only when carbonate dissolution occurs to buffer the pH, consistent with the experimental observations. The need for a pH buffer increases with increasing temperature, and different pH buffers may play a role for different deposit types. We propose that carbonate-buffered fluid mixing is a critical process for forming post-sedimentary Zn ± Pb ± Ba deposits in sedimentary carbonate rocks. |
doi_str_mv | 10.1130/G49056.1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2593193452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593193452</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-e461f434079873e5397fe4316f7a44ba8fbb4b4671fc3cb14c0b07c8254351463</originalsourceid><addsrcrecordid>eNpNkMFLwzAYxYMoOKfgn1DwIkhnvuZL0x5l6KYM9KAXLyFJE83ompl0DP3r7agHTw8ev_cePEIugc4AGL1dYE15OYMjMoEaWV6UVXFMJpTWkIsS2Ck5S2lNKSAX1YQ8LcM-Myrq0KneZo1PKbS73ocuc8r41veDnbJkG7-xXZ9_htTbJnvv8hedbXxno2r9jzoEzsmJU22yF386JW8P96_zZb56XjzO71a5Ylj1ucUSHDKkoq4Es5zVwllkUDqhELWqnNaosRTgDDMa0FBNhakKjowDlmxKrsbebQxfO5t6uQ672A2TsuA1g5ohLwbqeqRMDClF6-Q2-o2K3xKoPDwlx6ckDOjNiH7YkIy3nbH7ENvmXy8tQFLOClqyX5_6aNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593193452</pqid></control><display><type>article</type><title>How carbonate dissolution facilitates sediment-hosted Zn-Pb mineralization</title><source>GeoScienceWorld</source><creator>Liu, Weihua ; Spinks, Sam C ; Glenn, Matthew ; MacRae, Colin ; Pearce, Mark A</creator><creatorcontrib>Liu, Weihua ; Spinks, Sam C ; Glenn, Matthew ; MacRae, Colin ; Pearce, Mark A</creatorcontrib><description>Most of the world's Zn and Pb is extracted from sediment-hosted Zn-Pb deposits. The Zn-Pb deposits hosted in carbonate rocks are hypothesized to form by mixing of acidic metal-bearing brines with reduced sulfur-bearing fluids while dissolving sedimentary carbonate. To test the role of carbonate in this process, we conducted hydrothermal experiments simulating ore formation by reacting Zn ± Pb ± Ba-bearing brines with H2S and SO42- produced by native sulfur, with and without carbonate minerals (calcite or dolomite crystals), at 200°C and water-saturated pressure. Sphalerite, galena, and barite (or anhydrite) crystals formed only when carbonate was present in the experiment, accompanied by carbonate dissolution. The textures of sphalerite clusters are similar to those observed in ancient and modern hydrothermal deposits. Thermodynamic modeling at 150°C and 250°C demonstrates that mixing of metal-rich brines and H2S causes most of the Zn in solution to precipitate as sphalerite only when carbonate dissolution occurs to buffer the pH, consistent with the experimental observations. The need for a pH buffer increases with increasing temperature, and different pH buffers may play a role for different deposit types. We propose that carbonate-buffered fluid mixing is a critical process for forming post-sedimentary Zn ± Pb ± Ba deposits in sedimentary carbonate rocks.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G49056.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>alkaline earth metals ; Anhydrite ; backscattering ; Barite ; Barium ; Brines ; Buffers ; Calcite ; calcium ; Carbonate minerals ; Carbonate rocks ; Carbonates ; chemical reactions ; Crystals ; Deposits ; Dissolution ; Dissolving ; Dolomite ; Dolostone ; Economic geology ; electron microscopy data ; electron probe data ; experimental studies ; Fluids ; Galena ; Geochemistry ; Geology ; Heavy metals ; Hydrogen sulfide ; hydrothermal conditions ; Hydrothermal deposits ; laboratory studies ; Lead ; lead ores ; magnesium ; metal ores ; metals ; mineral deposits, genesis ; Mineralization ; petrography ; pH effects ; rock, sediment, soil ; Sediment ; Sediment deposits ; solution ; Sphalerite ; sulfides ; Sulfur ; Sulphur ; textures ; Thermodynamic models ; Zinc ; zinc ores ; Zincblende</subject><ispartof>Geology (Boulder), 2021-11, Vol.49 (11), p.1363-1368</ispartof><rights>GeoRef, Copyright 2022, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><rights>Copyright Geological Society of America Nov 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-e461f434079873e5397fe4316f7a44ba8fbb4b4671fc3cb14c0b07c8254351463</citedby><cites>FETCH-LOGICAL-a348t-e461f434079873e5397fe4316f7a44ba8fbb4b4671fc3cb14c0b07c8254351463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/G49056.1$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,38858,77567</link.rule.ids></links><search><creatorcontrib>Liu, Weihua</creatorcontrib><creatorcontrib>Spinks, Sam C</creatorcontrib><creatorcontrib>Glenn, Matthew</creatorcontrib><creatorcontrib>MacRae, Colin</creatorcontrib><creatorcontrib>Pearce, Mark A</creatorcontrib><title>How carbonate dissolution facilitates sediment-hosted Zn-Pb mineralization</title><title>Geology (Boulder)</title><description>Most of the world's Zn and Pb is extracted from sediment-hosted Zn-Pb deposits. The Zn-Pb deposits hosted in carbonate rocks are hypothesized to form by mixing of acidic metal-bearing brines with reduced sulfur-bearing fluids while dissolving sedimentary carbonate. To test the role of carbonate in this process, we conducted hydrothermal experiments simulating ore formation by reacting Zn ± Pb ± Ba-bearing brines with H2S and SO42- produced by native sulfur, with and without carbonate minerals (calcite or dolomite crystals), at 200°C and water-saturated pressure. Sphalerite, galena, and barite (or anhydrite) crystals formed only when carbonate was present in the experiment, accompanied by carbonate dissolution. The textures of sphalerite clusters are similar to those observed in ancient and modern hydrothermal deposits. Thermodynamic modeling at 150°C and 250°C demonstrates that mixing of metal-rich brines and H2S causes most of the Zn in solution to precipitate as sphalerite only when carbonate dissolution occurs to buffer the pH, consistent with the experimental observations. The need for a pH buffer increases with increasing temperature, and different pH buffers may play a role for different deposit types. We propose that carbonate-buffered fluid mixing is a critical process for forming post-sedimentary Zn ± Pb ± Ba deposits in sedimentary carbonate rocks.</description><subject>alkaline earth metals</subject><subject>Anhydrite</subject><subject>backscattering</subject><subject>Barite</subject><subject>Barium</subject><subject>Brines</subject><subject>Buffers</subject><subject>Calcite</subject><subject>calcium</subject><subject>Carbonate minerals</subject><subject>Carbonate rocks</subject><subject>Carbonates</subject><subject>chemical reactions</subject><subject>Crystals</subject><subject>Deposits</subject><subject>Dissolution</subject><subject>Dissolving</subject><subject>Dolomite</subject><subject>Dolostone</subject><subject>Economic geology</subject><subject>electron microscopy data</subject><subject>electron probe data</subject><subject>experimental studies</subject><subject>Fluids</subject><subject>Galena</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Heavy metals</subject><subject>Hydrogen sulfide</subject><subject>hydrothermal conditions</subject><subject>Hydrothermal deposits</subject><subject>laboratory studies</subject><subject>Lead</subject><subject>lead ores</subject><subject>magnesium</subject><subject>metal ores</subject><subject>metals</subject><subject>mineral deposits, genesis</subject><subject>Mineralization</subject><subject>petrography</subject><subject>pH effects</subject><subject>rock, sediment, soil</subject><subject>Sediment</subject><subject>Sediment deposits</subject><subject>solution</subject><subject>Sphalerite</subject><subject>sulfides</subject><subject>Sulfur</subject><subject>Sulphur</subject><subject>textures</subject><subject>Thermodynamic models</subject><subject>Zinc</subject><subject>zinc ores</subject><subject>Zincblende</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkMFLwzAYxYMoOKfgn1DwIkhnvuZL0x5l6KYM9KAXLyFJE83ompl0DP3r7agHTw8ev_cePEIugc4AGL1dYE15OYMjMoEaWV6UVXFMJpTWkIsS2Ck5S2lNKSAX1YQ8LcM-Myrq0KneZo1PKbS73ocuc8r41veDnbJkG7-xXZ9_htTbJnvv8hedbXxno2r9jzoEzsmJU22yF386JW8P96_zZb56XjzO71a5Ylj1ucUSHDKkoq4Es5zVwllkUDqhELWqnNaosRTgDDMa0FBNhakKjowDlmxKrsbebQxfO5t6uQ672A2TsuA1g5ohLwbqeqRMDClF6-Q2-o2K3xKoPDwlx6ckDOjNiH7YkIy3nbH7ENvmXy8tQFLOClqyX5_6aNg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Liu, Weihua</creator><creator>Spinks, Sam C</creator><creator>Glenn, Matthew</creator><creator>MacRae, Colin</creator><creator>Pearce, Mark A</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20211101</creationdate><title>How carbonate dissolution facilitates sediment-hosted Zn-Pb mineralization</title><author>Liu, Weihua ; Spinks, Sam C ; Glenn, Matthew ; MacRae, Colin ; Pearce, Mark A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-e461f434079873e5397fe4316f7a44ba8fbb4b4671fc3cb14c0b07c8254351463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>alkaline earth metals</topic><topic>Anhydrite</topic><topic>backscattering</topic><topic>Barite</topic><topic>Barium</topic><topic>Brines</topic><topic>Buffers</topic><topic>Calcite</topic><topic>calcium</topic><topic>Carbonate minerals</topic><topic>Carbonate rocks</topic><topic>Carbonates</topic><topic>chemical reactions</topic><topic>Crystals</topic><topic>Deposits</topic><topic>Dissolution</topic><topic>Dissolving</topic><topic>Dolomite</topic><topic>Dolostone</topic><topic>Economic geology</topic><topic>electron microscopy data</topic><topic>electron probe data</topic><topic>experimental studies</topic><topic>Fluids</topic><topic>Galena</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Heavy metals</topic><topic>Hydrogen sulfide</topic><topic>hydrothermal conditions</topic><topic>Hydrothermal deposits</topic><topic>laboratory studies</topic><topic>Lead</topic><topic>lead ores</topic><topic>magnesium</topic><topic>metal ores</topic><topic>metals</topic><topic>mineral deposits, genesis</topic><topic>Mineralization</topic><topic>petrography</topic><topic>pH effects</topic><topic>rock, sediment, soil</topic><topic>Sediment</topic><topic>Sediment deposits</topic><topic>solution</topic><topic>Sphalerite</topic><topic>sulfides</topic><topic>Sulfur</topic><topic>Sulphur</topic><topic>textures</topic><topic>Thermodynamic models</topic><topic>Zinc</topic><topic>zinc ores</topic><topic>Zincblende</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Weihua</creatorcontrib><creatorcontrib>Spinks, Sam C</creatorcontrib><creatorcontrib>Glenn, Matthew</creatorcontrib><creatorcontrib>MacRae, Colin</creatorcontrib><creatorcontrib>Pearce, Mark A</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Weihua</au><au>Spinks, Sam C</au><au>Glenn, Matthew</au><au>MacRae, Colin</au><au>Pearce, Mark A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How carbonate dissolution facilitates sediment-hosted Zn-Pb mineralization</atitle><jtitle>Geology (Boulder)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>49</volume><issue>11</issue><spage>1363</spage><epage>1368</epage><pages>1363-1368</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>Most of the world's Zn and Pb is extracted from sediment-hosted Zn-Pb deposits. The Zn-Pb deposits hosted in carbonate rocks are hypothesized to form by mixing of acidic metal-bearing brines with reduced sulfur-bearing fluids while dissolving sedimentary carbonate. To test the role of carbonate in this process, we conducted hydrothermal experiments simulating ore formation by reacting Zn ± Pb ± Ba-bearing brines with H2S and SO42- produced by native sulfur, with and without carbonate minerals (calcite or dolomite crystals), at 200°C and water-saturated pressure. Sphalerite, galena, and barite (or anhydrite) crystals formed only when carbonate was present in the experiment, accompanied by carbonate dissolution. The textures of sphalerite clusters are similar to those observed in ancient and modern hydrothermal deposits. Thermodynamic modeling at 150°C and 250°C demonstrates that mixing of metal-rich brines and H2S causes most of the Zn in solution to precipitate as sphalerite only when carbonate dissolution occurs to buffer the pH, consistent with the experimental observations. The need for a pH buffer increases with increasing temperature, and different pH buffers may play a role for different deposit types. We propose that carbonate-buffered fluid mixing is a critical process for forming post-sedimentary Zn ± Pb ± Ba deposits in sedimentary carbonate rocks.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G49056.1</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-7613 |
ispartof | Geology (Boulder), 2021-11, Vol.49 (11), p.1363-1368 |
issn | 0091-7613 1943-2682 |
language | eng |
recordid | cdi_proquest_journals_2593193452 |
source | GeoScienceWorld |
subjects | alkaline earth metals Anhydrite backscattering Barite Barium Brines Buffers Calcite calcium Carbonate minerals Carbonate rocks Carbonates chemical reactions Crystals Deposits Dissolution Dissolving Dolomite Dolostone Economic geology electron microscopy data electron probe data experimental studies Fluids Galena Geochemistry Geology Heavy metals Hydrogen sulfide hydrothermal conditions Hydrothermal deposits laboratory studies Lead lead ores magnesium metal ores metals mineral deposits, genesis Mineralization petrography pH effects rock, sediment, soil Sediment Sediment deposits solution Sphalerite sulfides Sulfur Sulphur textures Thermodynamic models Zinc zinc ores Zincblende |
title | How carbonate dissolution facilitates sediment-hosted Zn-Pb mineralization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20carbonate%20dissolution%20facilitates%20sediment-hosted%20Zn-Pb%20mineralization&rft.jtitle=Geology%20(Boulder)&rft.au=Liu,%20Weihua&rft.date=2021-11-01&rft.volume=49&rft.issue=11&rft.spage=1363&rft.epage=1368&rft.pages=1363-1368&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G49056.1&rft_dat=%3Cproquest_cross%3E2593193452%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-e461f434079873e5397fe4316f7a44ba8fbb4b4671fc3cb14c0b07c8254351463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2593193452&rft_id=info:pmid/&rfr_iscdi=true |