Loading…

How carbonate dissolution facilitates sediment-hosted Zn-Pb mineralization

Most of the world's Zn and Pb is extracted from sediment-hosted Zn-Pb deposits. The Zn-Pb deposits hosted in carbonate rocks are hypothesized to form by mixing of acidic metal-bearing brines with reduced sulfur-bearing fluids while dissolving sedimentary carbonate. To test the role of carbonate...

Full description

Saved in:
Bibliographic Details
Published in:Geology (Boulder) 2021-11, Vol.49 (11), p.1363-1368
Main Authors: Liu, Weihua, Spinks, Sam C, Glenn, Matthew, MacRae, Colin, Pearce, Mark A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a348t-e461f434079873e5397fe4316f7a44ba8fbb4b4671fc3cb14c0b07c8254351463
cites cdi_FETCH-LOGICAL-a348t-e461f434079873e5397fe4316f7a44ba8fbb4b4671fc3cb14c0b07c8254351463
container_end_page 1368
container_issue 11
container_start_page 1363
container_title Geology (Boulder)
container_volume 49
creator Liu, Weihua
Spinks, Sam C
Glenn, Matthew
MacRae, Colin
Pearce, Mark A
description Most of the world's Zn and Pb is extracted from sediment-hosted Zn-Pb deposits. The Zn-Pb deposits hosted in carbonate rocks are hypothesized to form by mixing of acidic metal-bearing brines with reduced sulfur-bearing fluids while dissolving sedimentary carbonate. To test the role of carbonate in this process, we conducted hydrothermal experiments simulating ore formation by reacting Zn ± Pb ± Ba-bearing brines with H2S and SO42- produced by native sulfur, with and without carbonate minerals (calcite or dolomite crystals), at 200°C and water-saturated pressure. Sphalerite, galena, and barite (or anhydrite) crystals formed only when carbonate was present in the experiment, accompanied by carbonate dissolution. The textures of sphalerite clusters are similar to those observed in ancient and modern hydrothermal deposits. Thermodynamic modeling at 150°C and 250°C demonstrates that mixing of metal-rich brines and H2S causes most of the Zn in solution to precipitate as sphalerite only when carbonate dissolution occurs to buffer the pH, consistent with the experimental observations. The need for a pH buffer increases with increasing temperature, and different pH buffers may play a role for different deposit types. We propose that carbonate-buffered fluid mixing is a critical process for forming post-sedimentary Zn ± Pb ± Ba deposits in sedimentary carbonate rocks.
doi_str_mv 10.1130/G49056.1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2593193452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593193452</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-e461f434079873e5397fe4316f7a44ba8fbb4b4671fc3cb14c0b07c8254351463</originalsourceid><addsrcrecordid>eNpNkMFLwzAYxYMoOKfgn1DwIkhnvuZL0x5l6KYM9KAXLyFJE83ompl0DP3r7agHTw8ev_cePEIugc4AGL1dYE15OYMjMoEaWV6UVXFMJpTWkIsS2Ck5S2lNKSAX1YQ8LcM-Myrq0KneZo1PKbS73ocuc8r41veDnbJkG7-xXZ9_htTbJnvv8hedbXxno2r9jzoEzsmJU22yF386JW8P96_zZb56XjzO71a5Ylj1ucUSHDKkoq4Es5zVwllkUDqhELWqnNaosRTgDDMa0FBNhakKjowDlmxKrsbebQxfO5t6uQ672A2TsuA1g5ohLwbqeqRMDClF6-Q2-o2K3xKoPDwlx6ckDOjNiH7YkIy3nbH7ENvmXy8tQFLOClqyX5_6aNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593193452</pqid></control><display><type>article</type><title>How carbonate dissolution facilitates sediment-hosted Zn-Pb mineralization</title><source>GeoScienceWorld</source><creator>Liu, Weihua ; Spinks, Sam C ; Glenn, Matthew ; MacRae, Colin ; Pearce, Mark A</creator><creatorcontrib>Liu, Weihua ; Spinks, Sam C ; Glenn, Matthew ; MacRae, Colin ; Pearce, Mark A</creatorcontrib><description>Most of the world's Zn and Pb is extracted from sediment-hosted Zn-Pb deposits. The Zn-Pb deposits hosted in carbonate rocks are hypothesized to form by mixing of acidic metal-bearing brines with reduced sulfur-bearing fluids while dissolving sedimentary carbonate. To test the role of carbonate in this process, we conducted hydrothermal experiments simulating ore formation by reacting Zn ± Pb ± Ba-bearing brines with H2S and SO42- produced by native sulfur, with and without carbonate minerals (calcite or dolomite crystals), at 200°C and water-saturated pressure. Sphalerite, galena, and barite (or anhydrite) crystals formed only when carbonate was present in the experiment, accompanied by carbonate dissolution. The textures of sphalerite clusters are similar to those observed in ancient and modern hydrothermal deposits. Thermodynamic modeling at 150°C and 250°C demonstrates that mixing of metal-rich brines and H2S causes most of the Zn in solution to precipitate as sphalerite only when carbonate dissolution occurs to buffer the pH, consistent with the experimental observations. The need for a pH buffer increases with increasing temperature, and different pH buffers may play a role for different deposit types. We propose that carbonate-buffered fluid mixing is a critical process for forming post-sedimentary Zn ± Pb ± Ba deposits in sedimentary carbonate rocks.</description><identifier>ISSN: 0091-7613</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G49056.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>alkaline earth metals ; Anhydrite ; backscattering ; Barite ; Barium ; Brines ; Buffers ; Calcite ; calcium ; Carbonate minerals ; Carbonate rocks ; Carbonates ; chemical reactions ; Crystals ; Deposits ; Dissolution ; Dissolving ; Dolomite ; Dolostone ; Economic geology ; electron microscopy data ; electron probe data ; experimental studies ; Fluids ; Galena ; Geochemistry ; Geology ; Heavy metals ; Hydrogen sulfide ; hydrothermal conditions ; Hydrothermal deposits ; laboratory studies ; Lead ; lead ores ; magnesium ; metal ores ; metals ; mineral deposits, genesis ; Mineralization ; petrography ; pH effects ; rock, sediment, soil ; Sediment ; Sediment deposits ; solution ; Sphalerite ; sulfides ; Sulfur ; Sulphur ; textures ; Thermodynamic models ; Zinc ; zinc ores ; Zincblende</subject><ispartof>Geology (Boulder), 2021-11, Vol.49 (11), p.1363-1368</ispartof><rights>GeoRef, Copyright 2022, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><rights>Copyright Geological Society of America Nov 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-e461f434079873e5397fe4316f7a44ba8fbb4b4671fc3cb14c0b07c8254351463</citedby><cites>FETCH-LOGICAL-a348t-e461f434079873e5397fe4316f7a44ba8fbb4b4671fc3cb14c0b07c8254351463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/G49056.1$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,38858,77567</link.rule.ids></links><search><creatorcontrib>Liu, Weihua</creatorcontrib><creatorcontrib>Spinks, Sam C</creatorcontrib><creatorcontrib>Glenn, Matthew</creatorcontrib><creatorcontrib>MacRae, Colin</creatorcontrib><creatorcontrib>Pearce, Mark A</creatorcontrib><title>How carbonate dissolution facilitates sediment-hosted Zn-Pb mineralization</title><title>Geology (Boulder)</title><description>Most of the world's Zn and Pb is extracted from sediment-hosted Zn-Pb deposits. The Zn-Pb deposits hosted in carbonate rocks are hypothesized to form by mixing of acidic metal-bearing brines with reduced sulfur-bearing fluids while dissolving sedimentary carbonate. To test the role of carbonate in this process, we conducted hydrothermal experiments simulating ore formation by reacting Zn ± Pb ± Ba-bearing brines with H2S and SO42- produced by native sulfur, with and without carbonate minerals (calcite or dolomite crystals), at 200°C and water-saturated pressure. Sphalerite, galena, and barite (or anhydrite) crystals formed only when carbonate was present in the experiment, accompanied by carbonate dissolution. The textures of sphalerite clusters are similar to those observed in ancient and modern hydrothermal deposits. Thermodynamic modeling at 150°C and 250°C demonstrates that mixing of metal-rich brines and H2S causes most of the Zn in solution to precipitate as sphalerite only when carbonate dissolution occurs to buffer the pH, consistent with the experimental observations. The need for a pH buffer increases with increasing temperature, and different pH buffers may play a role for different deposit types. We propose that carbonate-buffered fluid mixing is a critical process for forming post-sedimentary Zn ± Pb ± Ba deposits in sedimentary carbonate rocks.</description><subject>alkaline earth metals</subject><subject>Anhydrite</subject><subject>backscattering</subject><subject>Barite</subject><subject>Barium</subject><subject>Brines</subject><subject>Buffers</subject><subject>Calcite</subject><subject>calcium</subject><subject>Carbonate minerals</subject><subject>Carbonate rocks</subject><subject>Carbonates</subject><subject>chemical reactions</subject><subject>Crystals</subject><subject>Deposits</subject><subject>Dissolution</subject><subject>Dissolving</subject><subject>Dolomite</subject><subject>Dolostone</subject><subject>Economic geology</subject><subject>electron microscopy data</subject><subject>electron probe data</subject><subject>experimental studies</subject><subject>Fluids</subject><subject>Galena</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Heavy metals</subject><subject>Hydrogen sulfide</subject><subject>hydrothermal conditions</subject><subject>Hydrothermal deposits</subject><subject>laboratory studies</subject><subject>Lead</subject><subject>lead ores</subject><subject>magnesium</subject><subject>metal ores</subject><subject>metals</subject><subject>mineral deposits, genesis</subject><subject>Mineralization</subject><subject>petrography</subject><subject>pH effects</subject><subject>rock, sediment, soil</subject><subject>Sediment</subject><subject>Sediment deposits</subject><subject>solution</subject><subject>Sphalerite</subject><subject>sulfides</subject><subject>Sulfur</subject><subject>Sulphur</subject><subject>textures</subject><subject>Thermodynamic models</subject><subject>Zinc</subject><subject>zinc ores</subject><subject>Zincblende</subject><issn>0091-7613</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkMFLwzAYxYMoOKfgn1DwIkhnvuZL0x5l6KYM9KAXLyFJE83ompl0DP3r7agHTw8ev_cePEIugc4AGL1dYE15OYMjMoEaWV6UVXFMJpTWkIsS2Ck5S2lNKSAX1YQ8LcM-Myrq0KneZo1PKbS73ocuc8r41veDnbJkG7-xXZ9_htTbJnvv8hedbXxno2r9jzoEzsmJU22yF386JW8P96_zZb56XjzO71a5Ylj1ucUSHDKkoq4Es5zVwllkUDqhELWqnNaosRTgDDMa0FBNhakKjowDlmxKrsbebQxfO5t6uQ672A2TsuA1g5ohLwbqeqRMDClF6-Q2-o2K3xKoPDwlx6ckDOjNiH7YkIy3nbH7ENvmXy8tQFLOClqyX5_6aNg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Liu, Weihua</creator><creator>Spinks, Sam C</creator><creator>Glenn, Matthew</creator><creator>MacRae, Colin</creator><creator>Pearce, Mark A</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20211101</creationdate><title>How carbonate dissolution facilitates sediment-hosted Zn-Pb mineralization</title><author>Liu, Weihua ; Spinks, Sam C ; Glenn, Matthew ; MacRae, Colin ; Pearce, Mark A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-e461f434079873e5397fe4316f7a44ba8fbb4b4671fc3cb14c0b07c8254351463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>alkaline earth metals</topic><topic>Anhydrite</topic><topic>backscattering</topic><topic>Barite</topic><topic>Barium</topic><topic>Brines</topic><topic>Buffers</topic><topic>Calcite</topic><topic>calcium</topic><topic>Carbonate minerals</topic><topic>Carbonate rocks</topic><topic>Carbonates</topic><topic>chemical reactions</topic><topic>Crystals</topic><topic>Deposits</topic><topic>Dissolution</topic><topic>Dissolving</topic><topic>Dolomite</topic><topic>Dolostone</topic><topic>Economic geology</topic><topic>electron microscopy data</topic><topic>electron probe data</topic><topic>experimental studies</topic><topic>Fluids</topic><topic>Galena</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Heavy metals</topic><topic>Hydrogen sulfide</topic><topic>hydrothermal conditions</topic><topic>Hydrothermal deposits</topic><topic>laboratory studies</topic><topic>Lead</topic><topic>lead ores</topic><topic>magnesium</topic><topic>metal ores</topic><topic>metals</topic><topic>mineral deposits, genesis</topic><topic>Mineralization</topic><topic>petrography</topic><topic>pH effects</topic><topic>rock, sediment, soil</topic><topic>Sediment</topic><topic>Sediment deposits</topic><topic>solution</topic><topic>Sphalerite</topic><topic>sulfides</topic><topic>Sulfur</topic><topic>Sulphur</topic><topic>textures</topic><topic>Thermodynamic models</topic><topic>Zinc</topic><topic>zinc ores</topic><topic>Zincblende</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Weihua</creatorcontrib><creatorcontrib>Spinks, Sam C</creatorcontrib><creatorcontrib>Glenn, Matthew</creatorcontrib><creatorcontrib>MacRae, Colin</creatorcontrib><creatorcontrib>Pearce, Mark A</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Weihua</au><au>Spinks, Sam C</au><au>Glenn, Matthew</au><au>MacRae, Colin</au><au>Pearce, Mark A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How carbonate dissolution facilitates sediment-hosted Zn-Pb mineralization</atitle><jtitle>Geology (Boulder)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>49</volume><issue>11</issue><spage>1363</spage><epage>1368</epage><pages>1363-1368</pages><issn>0091-7613</issn><eissn>1943-2682</eissn><abstract>Most of the world's Zn and Pb is extracted from sediment-hosted Zn-Pb deposits. The Zn-Pb deposits hosted in carbonate rocks are hypothesized to form by mixing of acidic metal-bearing brines with reduced sulfur-bearing fluids while dissolving sedimentary carbonate. To test the role of carbonate in this process, we conducted hydrothermal experiments simulating ore formation by reacting Zn ± Pb ± Ba-bearing brines with H2S and SO42- produced by native sulfur, with and without carbonate minerals (calcite or dolomite crystals), at 200°C and water-saturated pressure. Sphalerite, galena, and barite (or anhydrite) crystals formed only when carbonate was present in the experiment, accompanied by carbonate dissolution. The textures of sphalerite clusters are similar to those observed in ancient and modern hydrothermal deposits. Thermodynamic modeling at 150°C and 250°C demonstrates that mixing of metal-rich brines and H2S causes most of the Zn in solution to precipitate as sphalerite only when carbonate dissolution occurs to buffer the pH, consistent with the experimental observations. The need for a pH buffer increases with increasing temperature, and different pH buffers may play a role for different deposit types. We propose that carbonate-buffered fluid mixing is a critical process for forming post-sedimentary Zn ± Pb ± Ba deposits in sedimentary carbonate rocks.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G49056.1</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0091-7613
ispartof Geology (Boulder), 2021-11, Vol.49 (11), p.1363-1368
issn 0091-7613
1943-2682
language eng
recordid cdi_proquest_journals_2593193452
source GeoScienceWorld
subjects alkaline earth metals
Anhydrite
backscattering
Barite
Barium
Brines
Buffers
Calcite
calcium
Carbonate minerals
Carbonate rocks
Carbonates
chemical reactions
Crystals
Deposits
Dissolution
Dissolving
Dolomite
Dolostone
Economic geology
electron microscopy data
electron probe data
experimental studies
Fluids
Galena
Geochemistry
Geology
Heavy metals
Hydrogen sulfide
hydrothermal conditions
Hydrothermal deposits
laboratory studies
Lead
lead ores
magnesium
metal ores
metals
mineral deposits, genesis
Mineralization
petrography
pH effects
rock, sediment, soil
Sediment
Sediment deposits
solution
Sphalerite
sulfides
Sulfur
Sulphur
textures
Thermodynamic models
Zinc
zinc ores
Zincblende
title How carbonate dissolution facilitates sediment-hosted Zn-Pb mineralization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20carbonate%20dissolution%20facilitates%20sediment-hosted%20Zn-Pb%20mineralization&rft.jtitle=Geology%20(Boulder)&rft.au=Liu,%20Weihua&rft.date=2021-11-01&rft.volume=49&rft.issue=11&rft.spage=1363&rft.epage=1368&rft.pages=1363-1368&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G49056.1&rft_dat=%3Cproquest_cross%3E2593193452%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-e461f434079873e5397fe4316f7a44ba8fbb4b4671fc3cb14c0b07c8254351463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2593193452&rft_id=info:pmid/&rfr_iscdi=true