Loading…

Development of superhydrophobic metallic surfaces with tuned morphology through microwave processing

The present study utilized microwave-based hydrothermal treatment to develop a durable superhydrophobic aluminium alloy (AA5083). The surface morphology was effectively tuned through modulation in processing temperatures with the transition from nanofibrils (NF) to densely networked flake-like (DNF)...

Full description

Saved in:
Bibliographic Details
Published in:Materials chemistry and physics 2022-01, Vol.275, p.125310, Article 125310
Main Authors: Ivvala, Jayanth, Arora, H.S., Grewal, H.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-99cf57de2a99992011d77b0c9ce94d58b474781339b9906917eeaefc62f9062d3
cites cdi_FETCH-LOGICAL-c349t-99cf57de2a99992011d77b0c9ce94d58b474781339b9906917eeaefc62f9062d3
container_end_page
container_issue
container_start_page 125310
container_title Materials chemistry and physics
container_volume 275
creator Ivvala, Jayanth
Arora, H.S.
Grewal, H.S.
description The present study utilized microwave-based hydrothermal treatment to develop a durable superhydrophobic aluminium alloy (AA5083). The surface morphology was effectively tuned through modulation in processing temperatures with the transition from nanofibrils (NF) to densely networked flake-like (DNF) structures. Subsequently, the microwave processed sample surfaces (AA5083) were grafted with precursors of a silanizing agent (1H, 1H, 2H, 2H-Perfluorooctyltriethoxysilane). The silanization of nanostructured surfaces imparted superhydrophobicity (θs>160°), with low hysteresis (10°) combined with low de-wetting resistance (θt∼40°) indicated metastable Cassie state for NFs owing to reduced longitudinal pinning and three-phase line sagging. As a result of the densely packed structures, the DNFs ensure low adhesion and hysteresis because of enhanced Laplace pressure. The mechanically stable DNFs showed high resilience to dynamic and impact loadings. Thus, microwave processing is a viable and efficient means of generating durable nanostructures for developing metallic superhydrophobic surfaces. [Display omitted] •Facile microwave processing was utilized to develop superhydrophobic aluminum alloy.•Distinct surface morphologies generated through altering microwave power.•Highly dense nanoflake morphological surfaces exhibit a stable Cassie state.•The influence of liquid surface tension on wetting, and adhesion was explored.•Nano flakes showed high wetting and mechanical stability than nano-fibrils.
doi_str_mv 10.1016/j.matchemphys.2021.125310
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2593193603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0254058421010932</els_id><sourcerecordid>2593193603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-99cf57de2a99992011d77b0c9ce94d58b474781339b9906917eeaefc62f9062d3</originalsourceid><addsrcrecordid>eNqNUEtPwzAMjhBIjMF_COLcESftuhzReEqTuMA56hJ3zdQ2JUmH-u_JNA4c8cW29D3sj5BbYAtgsLzfL7oq6ga7oZnCgjMOC-CFAHZGZrAqZSYE8HMyY7zIM1as8ktyFcKeMSgBxIyYRzxg64YO-0hdTcM4oG8m493QuK3VtMNYtW0awujrSmOg3zY2NI49Gto5n2Ct2000Nt6Nu4Z2Vnv3XR2QDt4leLD97ppc1FUb8Oa3z8nn89PH-jXbvL-8rR82mRa5jJmUui5Kg7ySqTgDMGW5ZVpqlLkpVtu8zMsVCCG3UrKlhBKxwloveZ1WbsSc3J10k_XXiCGqvRt9nywVL6QAKZZMJJQ8odKhIXis1eBtV_lJAVPHUNVe_QlVHUNVp1ATd33iYnrjYNGroC32Go31qKMyzv5D5Qd_7oiz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593193603</pqid></control><display><type>article</type><title>Development of superhydrophobic metallic surfaces with tuned morphology through microwave processing</title><source>ScienceDirect Journals</source><creator>Ivvala, Jayanth ; Arora, H.S. ; Grewal, H.S.</creator><creatorcontrib>Ivvala, Jayanth ; Arora, H.S. ; Grewal, H.S.</creatorcontrib><description>The present study utilized microwave-based hydrothermal treatment to develop a durable superhydrophobic aluminium alloy (AA5083). The surface morphology was effectively tuned through modulation in processing temperatures with the transition from nanofibrils (NF) to densely networked flake-like (DNF) structures. Subsequently, the microwave processed sample surfaces (AA5083) were grafted with precursors of a silanizing agent (1H, 1H, 2H, 2H-Perfluorooctyltriethoxysilane). The silanization of nanostructured surfaces imparted superhydrophobicity (θs&gt;160°), with low hysteresis (&lt;10°) and adhesion (40 μN) observed for DNF. High adhesion (∼170 μN) and hysteresis (&gt;10°) combined with low de-wetting resistance (θt∼40°) indicated metastable Cassie state for NFs owing to reduced longitudinal pinning and three-phase line sagging. As a result of the densely packed structures, the DNFs ensure low adhesion and hysteresis because of enhanced Laplace pressure. The mechanically stable DNFs showed high resilience to dynamic and impact loadings. Thus, microwave processing is a viable and efficient means of generating durable nanostructures for developing metallic superhydrophobic surfaces. [Display omitted] •Facile microwave processing was utilized to develop superhydrophobic aluminum alloy.•Distinct surface morphologies generated through altering microwave power.•Highly dense nanoflake morphological surfaces exhibit a stable Cassie state.•The influence of liquid surface tension on wetting, and adhesion was explored.•Nano flakes showed high wetting and mechanical stability than nano-fibrils.</description><identifier>ISSN: 0254-0584</identifier><identifier>EISSN: 1879-3312</identifier><identifier>DOI: 10.1016/j.matchemphys.2021.125310</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Adhesion ; Aluminum base alloys ; Functional ; Hydrophobic surfaces ; Hydrophobicity ; Hydrothermal treatment ; Hysteresis ; Metals and alloys ; Morphology ; Nanostructures ; Superhydrophobicity ; Surfaces ; Wetting</subject><ispartof>Materials chemistry and physics, 2022-01, Vol.275, p.125310, Article 125310</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-99cf57de2a99992011d77b0c9ce94d58b474781339b9906917eeaefc62f9062d3</citedby><cites>FETCH-LOGICAL-c349t-99cf57de2a99992011d77b0c9ce94d58b474781339b9906917eeaefc62f9062d3</cites><orcidid>0000-0002-5674-2930 ; 0000-0001-9265-4674 ; 0000-0003-0534-7807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ivvala, Jayanth</creatorcontrib><creatorcontrib>Arora, H.S.</creatorcontrib><creatorcontrib>Grewal, H.S.</creatorcontrib><title>Development of superhydrophobic metallic surfaces with tuned morphology through microwave processing</title><title>Materials chemistry and physics</title><description>The present study utilized microwave-based hydrothermal treatment to develop a durable superhydrophobic aluminium alloy (AA5083). The surface morphology was effectively tuned through modulation in processing temperatures with the transition from nanofibrils (NF) to densely networked flake-like (DNF) structures. Subsequently, the microwave processed sample surfaces (AA5083) were grafted with precursors of a silanizing agent (1H, 1H, 2H, 2H-Perfluorooctyltriethoxysilane). The silanization of nanostructured surfaces imparted superhydrophobicity (θs&gt;160°), with low hysteresis (&lt;10°) and adhesion (40 μN) observed for DNF. High adhesion (∼170 μN) and hysteresis (&gt;10°) combined with low de-wetting resistance (θt∼40°) indicated metastable Cassie state for NFs owing to reduced longitudinal pinning and three-phase line sagging. As a result of the densely packed structures, the DNFs ensure low adhesion and hysteresis because of enhanced Laplace pressure. The mechanically stable DNFs showed high resilience to dynamic and impact loadings. Thus, microwave processing is a viable and efficient means of generating durable nanostructures for developing metallic superhydrophobic surfaces. [Display omitted] •Facile microwave processing was utilized to develop superhydrophobic aluminum alloy.•Distinct surface morphologies generated through altering microwave power.•Highly dense nanoflake morphological surfaces exhibit a stable Cassie state.•The influence of liquid surface tension on wetting, and adhesion was explored.•Nano flakes showed high wetting and mechanical stability than nano-fibrils.</description><subject>Adhesion</subject><subject>Aluminum base alloys</subject><subject>Functional</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Hydrothermal treatment</subject><subject>Hysteresis</subject><subject>Metals and alloys</subject><subject>Morphology</subject><subject>Nanostructures</subject><subject>Superhydrophobicity</subject><subject>Surfaces</subject><subject>Wetting</subject><issn>0254-0584</issn><issn>1879-3312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNUEtPwzAMjhBIjMF_COLcESftuhzReEqTuMA56hJ3zdQ2JUmH-u_JNA4c8cW29D3sj5BbYAtgsLzfL7oq6ga7oZnCgjMOC-CFAHZGZrAqZSYE8HMyY7zIM1as8ktyFcKeMSgBxIyYRzxg64YO-0hdTcM4oG8m493QuK3VtMNYtW0awujrSmOg3zY2NI49Gto5n2Ct2000Nt6Nu4Z2Vnv3XR2QDt4leLD97ppc1FUb8Oa3z8nn89PH-jXbvL-8rR82mRa5jJmUui5Kg7ySqTgDMGW5ZVpqlLkpVtu8zMsVCCG3UrKlhBKxwloveZ1WbsSc3J10k_XXiCGqvRt9nywVL6QAKZZMJJQ8odKhIXis1eBtV_lJAVPHUNVe_QlVHUNVp1ATd33iYnrjYNGroC32Go31qKMyzv5D5Qd_7oiz</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Ivvala, Jayanth</creator><creator>Arora, H.S.</creator><creator>Grewal, H.S.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5674-2930</orcidid><orcidid>https://orcid.org/0000-0001-9265-4674</orcidid><orcidid>https://orcid.org/0000-0003-0534-7807</orcidid></search><sort><creationdate>20220101</creationdate><title>Development of superhydrophobic metallic surfaces with tuned morphology through microwave processing</title><author>Ivvala, Jayanth ; Arora, H.S. ; Grewal, H.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-99cf57de2a99992011d77b0c9ce94d58b474781339b9906917eeaefc62f9062d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adhesion</topic><topic>Aluminum base alloys</topic><topic>Functional</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Hydrothermal treatment</topic><topic>Hysteresis</topic><topic>Metals and alloys</topic><topic>Morphology</topic><topic>Nanostructures</topic><topic>Superhydrophobicity</topic><topic>Surfaces</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivvala, Jayanth</creatorcontrib><creatorcontrib>Arora, H.S.</creatorcontrib><creatorcontrib>Grewal, H.S.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Materials chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivvala, Jayanth</au><au>Arora, H.S.</au><au>Grewal, H.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of superhydrophobic metallic surfaces with tuned morphology through microwave processing</atitle><jtitle>Materials chemistry and physics</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>275</volume><spage>125310</spage><pages>125310-</pages><artnum>125310</artnum><issn>0254-0584</issn><eissn>1879-3312</eissn><abstract>The present study utilized microwave-based hydrothermal treatment to develop a durable superhydrophobic aluminium alloy (AA5083). The surface morphology was effectively tuned through modulation in processing temperatures with the transition from nanofibrils (NF) to densely networked flake-like (DNF) structures. Subsequently, the microwave processed sample surfaces (AA5083) were grafted with precursors of a silanizing agent (1H, 1H, 2H, 2H-Perfluorooctyltriethoxysilane). The silanization of nanostructured surfaces imparted superhydrophobicity (θs&gt;160°), with low hysteresis (&lt;10°) and adhesion (40 μN) observed for DNF. High adhesion (∼170 μN) and hysteresis (&gt;10°) combined with low de-wetting resistance (θt∼40°) indicated metastable Cassie state for NFs owing to reduced longitudinal pinning and three-phase line sagging. As a result of the densely packed structures, the DNFs ensure low adhesion and hysteresis because of enhanced Laplace pressure. The mechanically stable DNFs showed high resilience to dynamic and impact loadings. Thus, microwave processing is a viable and efficient means of generating durable nanostructures for developing metallic superhydrophobic surfaces. [Display omitted] •Facile microwave processing was utilized to develop superhydrophobic aluminum alloy.•Distinct surface morphologies generated through altering microwave power.•Highly dense nanoflake morphological surfaces exhibit a stable Cassie state.•The influence of liquid surface tension on wetting, and adhesion was explored.•Nano flakes showed high wetting and mechanical stability than nano-fibrils.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matchemphys.2021.125310</doi><orcidid>https://orcid.org/0000-0002-5674-2930</orcidid><orcidid>https://orcid.org/0000-0001-9265-4674</orcidid><orcidid>https://orcid.org/0000-0003-0534-7807</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0254-0584
ispartof Materials chemistry and physics, 2022-01, Vol.275, p.125310, Article 125310
issn 0254-0584
1879-3312
language eng
recordid cdi_proquest_journals_2593193603
source ScienceDirect Journals
subjects Adhesion
Aluminum base alloys
Functional
Hydrophobic surfaces
Hydrophobicity
Hydrothermal treatment
Hysteresis
Metals and alloys
Morphology
Nanostructures
Superhydrophobicity
Surfaces
Wetting
title Development of superhydrophobic metallic surfaces with tuned morphology through microwave processing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A48%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20superhydrophobic%20metallic%20surfaces%20with%20tuned%20morphology%20through%20microwave%20processing&rft.jtitle=Materials%20chemistry%20and%20physics&rft.au=Ivvala,%20Jayanth&rft.date=2022-01-01&rft.volume=275&rft.spage=125310&rft.pages=125310-&rft.artnum=125310&rft.issn=0254-0584&rft.eissn=1879-3312&rft_id=info:doi/10.1016/j.matchemphys.2021.125310&rft_dat=%3Cproquest_cross%3E2593193603%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-99cf57de2a99992011d77b0c9ce94d58b474781339b9906917eeaefc62f9062d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2593193603&rft_id=info:pmid/&rfr_iscdi=true