Loading…

On the ambiguity between differential and integral forms of the Martin-Ryskin-Watt unintegrated parton distribution function model

In this work, we study the structure of the leading order Martin-Ryskin-Watt (MRW) unintegrated parton distribution function (UPDF) and explain in detail why there exists discrepancy between the two different definitions of this UPDF model, i.e., the integral (I-MRW) and differential (D-MRW) MRW UPD...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-11
Main Authors: Valeshabadi, Ramin Kord, Modarres, Majid
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Valeshabadi, Ramin Kord
Modarres, Majid
description In this work, we study the structure of the leading order Martin-Ryskin-Watt (MRW) unintegrated parton distribution function (UPDF) and explain in detail why there exists discrepancy between the two different definitions of this UPDF model, i.e., the integral (I-MRW) and differential (D-MRW) MRW UPDFs. We perform this investigation with both angular and strong ordering cutoffs. The derivation footsteps of obtaining the I-MRW UPDF from the D-MRW ones are numerically performed, and the reason of such non-equivalency between the two forms is clearly explained. We show and find out that both methods suggested in the papers by Golec-Biernat and Stasto as well as that of Guiot have shortcomings, and only the combination of their prescriptions can give us the same UPDF structure from both of these two different versions of the MRW UPDF, namely I-MRW and the D-MRW UPDFs.
doi_str_mv 10.48550/arxiv.2111.02254
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2593343456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593343456</sourcerecordid><originalsourceid>FETCH-LOGICAL-a526-ae9b319b51e95deec79d97e22caacc9a2d9142a1dbb5688c693ee109a13978673</originalsourceid><addsrcrecordid>eNotTV1LwzAUDYLgmPsBvgV87kxumrZ5lOEXTAYy8HHcNLczc0tnmqp79Zdb557OOZwvxq6kmOaV1uIG47f_nIKUcioAdH7GRqCUzKoc4IJNum4jhICiBK3ViP0sAk9vxHFn_br36cAtpS-iwJ1vGooUksctx-C4D4nWcRBNG3cdb5tj8Rlj8iF7OXTvA7xiSrwPp2gix_eD3_6tdSl62yc_iKYP9ZHsWkfbS3be4LajyQnHbHl_t5w9ZvPFw9Psdp6hhiJDMlZJY7Ukox1RXRpnSgKoEevaIDgjc0DprNVFVdWFUURSGJTKlFVRqjG7_p_dx_ajpy6tNm0fw_C4Am2UylWuC_ULPNxkpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593343456</pqid></control><display><type>article</type><title>On the ambiguity between differential and integral forms of the Martin-Ryskin-Watt unintegrated parton distribution function model</title><source>Publicly Available Content Database</source><creator>Valeshabadi, Ramin Kord ; Modarres, Majid</creator><creatorcontrib>Valeshabadi, Ramin Kord ; Modarres, Majid</creatorcontrib><description>In this work, we study the structure of the leading order Martin-Ryskin-Watt (MRW) unintegrated parton distribution function (UPDF) and explain in detail why there exists discrepancy between the two different definitions of this UPDF model, i.e., the integral (I-MRW) and differential (D-MRW) MRW UPDFs. We perform this investigation with both angular and strong ordering cutoffs. The derivation footsteps of obtaining the I-MRW UPDF from the D-MRW ones are numerically performed, and the reason of such non-equivalency between the two forms is clearly explained. We show and find out that both methods suggested in the papers by Golec-Biernat and Stasto as well as that of Guiot have shortcomings, and only the combination of their prescriptions can give us the same UPDF structure from both of these two different versions of the MRW UPDF, namely I-MRW and the D-MRW UPDFs.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2111.02254</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Distribution functions ; Partons</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2593343456?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Valeshabadi, Ramin Kord</creatorcontrib><creatorcontrib>Modarres, Majid</creatorcontrib><title>On the ambiguity between differential and integral forms of the Martin-Ryskin-Watt unintegrated parton distribution function model</title><title>arXiv.org</title><description>In this work, we study the structure of the leading order Martin-Ryskin-Watt (MRW) unintegrated parton distribution function (UPDF) and explain in detail why there exists discrepancy between the two different definitions of this UPDF model, i.e., the integral (I-MRW) and differential (D-MRW) MRW UPDFs. We perform this investigation with both angular and strong ordering cutoffs. The derivation footsteps of obtaining the I-MRW UPDF from the D-MRW ones are numerically performed, and the reason of such non-equivalency between the two forms is clearly explained. We show and find out that both methods suggested in the papers by Golec-Biernat and Stasto as well as that of Guiot have shortcomings, and only the combination of their prescriptions can give us the same UPDF structure from both of these two different versions of the MRW UPDF, namely I-MRW and the D-MRW UPDFs.</description><subject>Distribution functions</subject><subject>Partons</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotTV1LwzAUDYLgmPsBvgV87kxumrZ5lOEXTAYy8HHcNLczc0tnmqp79Zdb557OOZwvxq6kmOaV1uIG47f_nIKUcioAdH7GRqCUzKoc4IJNum4jhICiBK3ViP0sAk9vxHFn_br36cAtpS-iwJ1vGooUksctx-C4D4nWcRBNG3cdb5tj8Rlj8iF7OXTvA7xiSrwPp2gix_eD3_6tdSl62yc_iKYP9ZHsWkfbS3be4LajyQnHbHl_t5w9ZvPFw9Psdp6hhiJDMlZJY7Ukox1RXRpnSgKoEevaIDgjc0DprNVFVdWFUURSGJTKlFVRqjG7_p_dx_ajpy6tNm0fw_C4Am2UylWuC_ULPNxkpw</recordid><startdate>20211103</startdate><enddate>20211103</enddate><creator>Valeshabadi, Ramin Kord</creator><creator>Modarres, Majid</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211103</creationdate><title>On the ambiguity between differential and integral forms of the Martin-Ryskin-Watt unintegrated parton distribution function model</title><author>Valeshabadi, Ramin Kord ; Modarres, Majid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a526-ae9b319b51e95deec79d97e22caacc9a2d9142a1dbb5688c693ee109a13978673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Distribution functions</topic><topic>Partons</topic><toplevel>online_resources</toplevel><creatorcontrib>Valeshabadi, Ramin Kord</creatorcontrib><creatorcontrib>Modarres, Majid</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valeshabadi, Ramin Kord</au><au>Modarres, Majid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the ambiguity between differential and integral forms of the Martin-Ryskin-Watt unintegrated parton distribution function model</atitle><jtitle>arXiv.org</jtitle><date>2021-11-03</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this work, we study the structure of the leading order Martin-Ryskin-Watt (MRW) unintegrated parton distribution function (UPDF) and explain in detail why there exists discrepancy between the two different definitions of this UPDF model, i.e., the integral (I-MRW) and differential (D-MRW) MRW UPDFs. We perform this investigation with both angular and strong ordering cutoffs. The derivation footsteps of obtaining the I-MRW UPDF from the D-MRW ones are numerically performed, and the reason of such non-equivalency between the two forms is clearly explained. We show and find out that both methods suggested in the papers by Golec-Biernat and Stasto as well as that of Guiot have shortcomings, and only the combination of their prescriptions can give us the same UPDF structure from both of these two different versions of the MRW UPDF, namely I-MRW and the D-MRW UPDFs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2111.02254</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2593343456
source Publicly Available Content Database
subjects Distribution functions
Partons
title On the ambiguity between differential and integral forms of the Martin-Ryskin-Watt unintegrated parton distribution function model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A55%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20ambiguity%20between%20differential%20and%20integral%20forms%20of%20the%20Martin-Ryskin-Watt%20unintegrated%20parton%20distribution%20function%20model&rft.jtitle=arXiv.org&rft.au=Valeshabadi,%20Ramin%20Kord&rft.date=2021-11-03&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2111.02254&rft_dat=%3Cproquest%3E2593343456%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a526-ae9b319b51e95deec79d97e22caacc9a2d9142a1dbb5688c693ee109a13978673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2593343456&rft_id=info:pmid/&rfr_iscdi=true