Loading…
Stable Zr-Based Metal–Organic Framework Nanoporous Membrane for Efficient Desalination of Hypersaline Water
Treatment of hypersaline waters is a critical environmental challenge. Pervaporation (PV) desalination is a promising technique to address this challenge, but current PV membranes still suffer from challenging issues such as low flux and insufficient stability. Herein, we propose in situ nanoseeding...
Saved in:
Published in: | Environmental science & technology 2021-11, Vol.55 (21), p.14917-14927 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a338t-d266579e67a90796157374cc279fe9583b6016313ffbf3d8d360ba6d426b3a043 |
---|---|
cites | cdi_FETCH-LOGICAL-a338t-d266579e67a90796157374cc279fe9583b6016313ffbf3d8d360ba6d426b3a043 |
container_end_page | 14927 |
container_issue | 21 |
container_start_page | 14917 |
container_title | Environmental science & technology |
container_volume | 55 |
creator | Li, Haotian Fu, Mao Wang, Shi-Qiang Zheng, Xiangyong Zhao, Min Yang, Fenglin Tang, Chuyang Y Dong, Yingchao |
description | Treatment of hypersaline waters is a critical environmental challenge. Pervaporation (PV) desalination is a promising technique to address this challenge, but current PV membranes still suffer from challenging issues such as low flux and insufficient stability. Herein, we propose in situ nanoseeding followed by a secondary growth strategy to fabricate a high-quality stable metal–organic framework (MOF) thin membrane (UiO-66) for high-performance pervaporation desalination of hypersaline waters. To address the issue of membrane quality, a TiO2 nano-interlayer was introduced on coarse mullite substrates to favor the growth of a UiO-66 nanoseed layer, on which a well-intergrown UiO-66 selective membrane layer with thickness as low as 1 μm was finally produced via subsequent secondary growth. The PV separation performance for hypersaline waters was systematically investigated at different salt concentrations, feed temperatures, and long-term operation in different extreme chemical environments. Besides having nearly complete rejection (99.9%), the UiO-66 membrane exhibited high flux (37.4 L·m–2·h–1) for hypersaline waters, outperforming current existing zeolite and MOF membranes. The membrane also demonstrated superior long-term operational stability under various harsh environments (hypersaline, hot, and acidic/alkaline feed water) and mild fouling behavior. The rational design proposed in this study is not only applicable for the development of a high-quality UiO-66 membrane enabling harsh hypersaline water treatment but can also be potentially extended to other next-generation nanoporous MOF membranes for more environmental applications. |
doi_str_mv | 10.1021/acs.est.1c06105 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2593909070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593909070</sourcerecordid><originalsourceid>FETCH-LOGICAL-a338t-d266579e67a90796157374cc279fe9583b6016313ffbf3d8d360ba6d426b3a043</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqUws1piRGnPce3EI5SWIhU6AAKxRJfERilJHOxUqBvvwBvyJKS0YmM66e77_5M-Qk4ZDBiEbIiZH2jfDlgGkoHYIz0mQghELNg-6QEwHigunw_JkfdLAAg5xD1S3beYlpq-uOASvc7prW6x_P78WrhXrIuMTh1W-sO6N3qHtW2ssyvfQVXqsNbUWEcnxhRZoeuWXmmPZVFjW9iaWkNn60a735WmT9hqd0wODJZen-xmnzxOJw_jWTBfXN-ML-YBch63QR5KKSKlZYQKIiWZiHg0yrIwUkYrEfNUApOccWNSw_M45xJSlPkolClHGPE-Odv2Ns6-rzorydKuXN29TEKhuIKuFjpquKUyZ7132iSNKyp064RBsnGadE6TTXrntEucbxObw1_lf_QPLKd62g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593909070</pqid></control><display><type>article</type><title>Stable Zr-Based Metal–Organic Framework Nanoporous Membrane for Efficient Desalination of Hypersaline Water</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Li, Haotian ; Fu, Mao ; Wang, Shi-Qiang ; Zheng, Xiangyong ; Zhao, Min ; Yang, Fenglin ; Tang, Chuyang Y ; Dong, Yingchao</creator><creatorcontrib>Li, Haotian ; Fu, Mao ; Wang, Shi-Qiang ; Zheng, Xiangyong ; Zhao, Min ; Yang, Fenglin ; Tang, Chuyang Y ; Dong, Yingchao</creatorcontrib><description>Treatment of hypersaline waters is a critical environmental challenge. Pervaporation (PV) desalination is a promising technique to address this challenge, but current PV membranes still suffer from challenging issues such as low flux and insufficient stability. Herein, we propose in situ nanoseeding followed by a secondary growth strategy to fabricate a high-quality stable metal–organic framework (MOF) thin membrane (UiO-66) for high-performance pervaporation desalination of hypersaline waters. To address the issue of membrane quality, a TiO2 nano-interlayer was introduced on coarse mullite substrates to favor the growth of a UiO-66 nanoseed layer, on which a well-intergrown UiO-66 selective membrane layer with thickness as low as 1 μm was finally produced via subsequent secondary growth. The PV separation performance for hypersaline waters was systematically investigated at different salt concentrations, feed temperatures, and long-term operation in different extreme chemical environments. Besides having nearly complete rejection (99.9%), the UiO-66 membrane exhibited high flux (37.4 L·m–2·h–1) for hypersaline waters, outperforming current existing zeolite and MOF membranes. The membrane also demonstrated superior long-term operational stability under various harsh environments (hypersaline, hot, and acidic/alkaline feed water) and mild fouling behavior. The rational design proposed in this study is not only applicable for the development of a high-quality UiO-66 membrane enabling harsh hypersaline water treatment but can also be potentially extended to other next-generation nanoporous MOF membranes for more environmental applications.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.1c06105</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Desalination ; Harsh environments ; Interlayers ; Membranes ; Metal-organic frameworks ; Mullite ; Pervaporation ; Stability ; Substrates ; Thickness ; Titanium dioxide ; Treatment and Resource Recovery ; Water treatment ; Zeolites ; Zirconium</subject><ispartof>Environmental science & technology, 2021-11, Vol.55 (21), p.14917-14927</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 2, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a338t-d266579e67a90796157374cc279fe9583b6016313ffbf3d8d360ba6d426b3a043</citedby><cites>FETCH-LOGICAL-a338t-d266579e67a90796157374cc279fe9583b6016313ffbf3d8d360ba6d426b3a043</cites><orcidid>0000-0003-1213-8317 ; 0000-0002-7932-6462 ; 0000-0003-1409-0994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Haotian</creatorcontrib><creatorcontrib>Fu, Mao</creatorcontrib><creatorcontrib>Wang, Shi-Qiang</creatorcontrib><creatorcontrib>Zheng, Xiangyong</creatorcontrib><creatorcontrib>Zhao, Min</creatorcontrib><creatorcontrib>Yang, Fenglin</creatorcontrib><creatorcontrib>Tang, Chuyang Y</creatorcontrib><creatorcontrib>Dong, Yingchao</creatorcontrib><title>Stable Zr-Based Metal–Organic Framework Nanoporous Membrane for Efficient Desalination of Hypersaline Water</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Treatment of hypersaline waters is a critical environmental challenge. Pervaporation (PV) desalination is a promising technique to address this challenge, but current PV membranes still suffer from challenging issues such as low flux and insufficient stability. Herein, we propose in situ nanoseeding followed by a secondary growth strategy to fabricate a high-quality stable metal–organic framework (MOF) thin membrane (UiO-66) for high-performance pervaporation desalination of hypersaline waters. To address the issue of membrane quality, a TiO2 nano-interlayer was introduced on coarse mullite substrates to favor the growth of a UiO-66 nanoseed layer, on which a well-intergrown UiO-66 selective membrane layer with thickness as low as 1 μm was finally produced via subsequent secondary growth. The PV separation performance for hypersaline waters was systematically investigated at different salt concentrations, feed temperatures, and long-term operation in different extreme chemical environments. Besides having nearly complete rejection (99.9%), the UiO-66 membrane exhibited high flux (37.4 L·m–2·h–1) for hypersaline waters, outperforming current existing zeolite and MOF membranes. The membrane also demonstrated superior long-term operational stability under various harsh environments (hypersaline, hot, and acidic/alkaline feed water) and mild fouling behavior. The rational design proposed in this study is not only applicable for the development of a high-quality UiO-66 membrane enabling harsh hypersaline water treatment but can also be potentially extended to other next-generation nanoporous MOF membranes for more environmental applications.</description><subject>Desalination</subject><subject>Harsh environments</subject><subject>Interlayers</subject><subject>Membranes</subject><subject>Metal-organic frameworks</subject><subject>Mullite</subject><subject>Pervaporation</subject><subject>Stability</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Titanium dioxide</subject><subject>Treatment and Resource Recovery</subject><subject>Water treatment</subject><subject>Zeolites</subject><subject>Zirconium</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqUws1piRGnPce3EI5SWIhU6AAKxRJfERilJHOxUqBvvwBvyJKS0YmM66e77_5M-Qk4ZDBiEbIiZH2jfDlgGkoHYIz0mQghELNg-6QEwHigunw_JkfdLAAg5xD1S3beYlpq-uOASvc7prW6x_P78WrhXrIuMTh1W-sO6N3qHtW2ssyvfQVXqsNbUWEcnxhRZoeuWXmmPZVFjW9iaWkNn60a735WmT9hqd0wODJZen-xmnzxOJw_jWTBfXN-ML-YBch63QR5KKSKlZYQKIiWZiHg0yrIwUkYrEfNUApOccWNSw_M45xJSlPkolClHGPE-Odv2Ns6-rzorydKuXN29TEKhuIKuFjpquKUyZ7132iSNKyp064RBsnGadE6TTXrntEucbxObw1_lf_QPLKd62g</recordid><startdate>20211102</startdate><enddate>20211102</enddate><creator>Li, Haotian</creator><creator>Fu, Mao</creator><creator>Wang, Shi-Qiang</creator><creator>Zheng, Xiangyong</creator><creator>Zhao, Min</creator><creator>Yang, Fenglin</creator><creator>Tang, Chuyang Y</creator><creator>Dong, Yingchao</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1213-8317</orcidid><orcidid>https://orcid.org/0000-0002-7932-6462</orcidid><orcidid>https://orcid.org/0000-0003-1409-0994</orcidid></search><sort><creationdate>20211102</creationdate><title>Stable Zr-Based Metal–Organic Framework Nanoporous Membrane for Efficient Desalination of Hypersaline Water</title><author>Li, Haotian ; Fu, Mao ; Wang, Shi-Qiang ; Zheng, Xiangyong ; Zhao, Min ; Yang, Fenglin ; Tang, Chuyang Y ; Dong, Yingchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a338t-d266579e67a90796157374cc279fe9583b6016313ffbf3d8d360ba6d426b3a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Desalination</topic><topic>Harsh environments</topic><topic>Interlayers</topic><topic>Membranes</topic><topic>Metal-organic frameworks</topic><topic>Mullite</topic><topic>Pervaporation</topic><topic>Stability</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Titanium dioxide</topic><topic>Treatment and Resource Recovery</topic><topic>Water treatment</topic><topic>Zeolites</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Haotian</creatorcontrib><creatorcontrib>Fu, Mao</creatorcontrib><creatorcontrib>Wang, Shi-Qiang</creatorcontrib><creatorcontrib>Zheng, Xiangyong</creatorcontrib><creatorcontrib>Zhao, Min</creatorcontrib><creatorcontrib>Yang, Fenglin</creatorcontrib><creatorcontrib>Tang, Chuyang Y</creatorcontrib><creatorcontrib>Dong, Yingchao</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Haotian</au><au>Fu, Mao</au><au>Wang, Shi-Qiang</au><au>Zheng, Xiangyong</au><au>Zhao, Min</au><au>Yang, Fenglin</au><au>Tang, Chuyang Y</au><au>Dong, Yingchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable Zr-Based Metal–Organic Framework Nanoporous Membrane for Efficient Desalination of Hypersaline Water</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2021-11-02</date><risdate>2021</risdate><volume>55</volume><issue>21</issue><spage>14917</spage><epage>14927</epage><pages>14917-14927</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Treatment of hypersaline waters is a critical environmental challenge. Pervaporation (PV) desalination is a promising technique to address this challenge, but current PV membranes still suffer from challenging issues such as low flux and insufficient stability. Herein, we propose in situ nanoseeding followed by a secondary growth strategy to fabricate a high-quality stable metal–organic framework (MOF) thin membrane (UiO-66) for high-performance pervaporation desalination of hypersaline waters. To address the issue of membrane quality, a TiO2 nano-interlayer was introduced on coarse mullite substrates to favor the growth of a UiO-66 nanoseed layer, on which a well-intergrown UiO-66 selective membrane layer with thickness as low as 1 μm was finally produced via subsequent secondary growth. The PV separation performance for hypersaline waters was systematically investigated at different salt concentrations, feed temperatures, and long-term operation in different extreme chemical environments. Besides having nearly complete rejection (99.9%), the UiO-66 membrane exhibited high flux (37.4 L·m–2·h–1) for hypersaline waters, outperforming current existing zeolite and MOF membranes. The membrane also demonstrated superior long-term operational stability under various harsh environments (hypersaline, hot, and acidic/alkaline feed water) and mild fouling behavior. The rational design proposed in this study is not only applicable for the development of a high-quality UiO-66 membrane enabling harsh hypersaline water treatment but can also be potentially extended to other next-generation nanoporous MOF membranes for more environmental applications.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.1c06105</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1213-8317</orcidid><orcidid>https://orcid.org/0000-0002-7932-6462</orcidid><orcidid>https://orcid.org/0000-0003-1409-0994</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2021-11, Vol.55 (21), p.14917-14927 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_journals_2593909070 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Desalination Harsh environments Interlayers Membranes Metal-organic frameworks Mullite Pervaporation Stability Substrates Thickness Titanium dioxide Treatment and Resource Recovery Water treatment Zeolites Zirconium |
title | Stable Zr-Based Metal–Organic Framework Nanoporous Membrane for Efficient Desalination of Hypersaline Water |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20Zr-Based%20Metal%E2%80%93Organic%20Framework%20Nanoporous%20Membrane%20for%20Efficient%20Desalination%20of%20Hypersaline%20Water&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Li,%20Haotian&rft.date=2021-11-02&rft.volume=55&rft.issue=21&rft.spage=14917&rft.epage=14927&rft.pages=14917-14927&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.1c06105&rft_dat=%3Cproquest_cross%3E2593909070%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a338t-d266579e67a90796157374cc279fe9583b6016313ffbf3d8d360ba6d426b3a043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2593909070&rft_id=info:pmid/&rfr_iscdi=true |