Loading…

Stable Zr-Based Metal–Organic Framework Nanoporous Membrane for Efficient Desalination of Hypersaline Water

Treatment of hypersaline waters is a critical environmental challenge. Pervaporation (PV) desalination is a promising technique to address this challenge, but current PV membranes still suffer from challenging issues such as low flux and insufficient stability. Herein, we propose in situ nanoseeding...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2021-11, Vol.55 (21), p.14917-14927
Main Authors: Li, Haotian, Fu, Mao, Wang, Shi-Qiang, Zheng, Xiangyong, Zhao, Min, Yang, Fenglin, Tang, Chuyang Y, Dong, Yingchao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a338t-d266579e67a90796157374cc279fe9583b6016313ffbf3d8d360ba6d426b3a043
cites cdi_FETCH-LOGICAL-a338t-d266579e67a90796157374cc279fe9583b6016313ffbf3d8d360ba6d426b3a043
container_end_page 14927
container_issue 21
container_start_page 14917
container_title Environmental science & technology
container_volume 55
creator Li, Haotian
Fu, Mao
Wang, Shi-Qiang
Zheng, Xiangyong
Zhao, Min
Yang, Fenglin
Tang, Chuyang Y
Dong, Yingchao
description Treatment of hypersaline waters is a critical environmental challenge. Pervaporation (PV) desalination is a promising technique to address this challenge, but current PV membranes still suffer from challenging issues such as low flux and insufficient stability. Herein, we propose in situ nanoseeding followed by a secondary growth strategy to fabricate a high-quality stable metal–organic framework (MOF) thin membrane (UiO-66) for high-performance pervaporation desalination of hypersaline waters. To address the issue of membrane quality, a TiO2 nano-interlayer was introduced on coarse mullite substrates to favor the growth of a UiO-66 nanoseed layer, on which a well-intergrown UiO-66 selective membrane layer with thickness as low as 1 μm was finally produced via subsequent secondary growth. The PV separation performance for hypersaline waters was systematically investigated at different salt concentrations, feed temperatures, and long-term operation in different extreme chemical environments. Besides having nearly complete rejection (99.9%), the UiO-66 membrane exhibited high flux (37.4 L·m–2·h–1) for hypersaline waters, outperforming current existing zeolite and MOF membranes. The membrane also demonstrated superior long-term operational stability under various harsh environments (hypersaline, hot, and acidic/alkaline feed water) and mild fouling behavior. The rational design proposed in this study is not only applicable for the development of a high-quality UiO-66 membrane enabling harsh hypersaline water treatment but can also be potentially extended to other next-generation nanoporous MOF membranes for more environmental applications.
doi_str_mv 10.1021/acs.est.1c06105
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2593909070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2593909070</sourcerecordid><originalsourceid>FETCH-LOGICAL-a338t-d266579e67a90796157374cc279fe9583b6016313ffbf3d8d360ba6d426b3a043</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqUws1piRGnPce3EI5SWIhU6AAKxRJfERilJHOxUqBvvwBvyJKS0YmM66e77_5M-Qk4ZDBiEbIiZH2jfDlgGkoHYIz0mQghELNg-6QEwHigunw_JkfdLAAg5xD1S3beYlpq-uOASvc7prW6x_P78WrhXrIuMTh1W-sO6N3qHtW2ssyvfQVXqsNbUWEcnxhRZoeuWXmmPZVFjW9iaWkNn60a735WmT9hqd0wODJZen-xmnzxOJw_jWTBfXN-ML-YBch63QR5KKSKlZYQKIiWZiHg0yrIwUkYrEfNUApOccWNSw_M45xJSlPkolClHGPE-Odv2Ns6-rzorydKuXN29TEKhuIKuFjpquKUyZ7132iSNKyp064RBsnGadE6TTXrntEucbxObw1_lf_QPLKd62g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2593909070</pqid></control><display><type>article</type><title>Stable Zr-Based Metal–Organic Framework Nanoporous Membrane for Efficient Desalination of Hypersaline Water</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Li, Haotian ; Fu, Mao ; Wang, Shi-Qiang ; Zheng, Xiangyong ; Zhao, Min ; Yang, Fenglin ; Tang, Chuyang Y ; Dong, Yingchao</creator><creatorcontrib>Li, Haotian ; Fu, Mao ; Wang, Shi-Qiang ; Zheng, Xiangyong ; Zhao, Min ; Yang, Fenglin ; Tang, Chuyang Y ; Dong, Yingchao</creatorcontrib><description>Treatment of hypersaline waters is a critical environmental challenge. Pervaporation (PV) desalination is a promising technique to address this challenge, but current PV membranes still suffer from challenging issues such as low flux and insufficient stability. Herein, we propose in situ nanoseeding followed by a secondary growth strategy to fabricate a high-quality stable metal–organic framework (MOF) thin membrane (UiO-66) for high-performance pervaporation desalination of hypersaline waters. To address the issue of membrane quality, a TiO2 nano-interlayer was introduced on coarse mullite substrates to favor the growth of a UiO-66 nanoseed layer, on which a well-intergrown UiO-66 selective membrane layer with thickness as low as 1 μm was finally produced via subsequent secondary growth. The PV separation performance for hypersaline waters was systematically investigated at different salt concentrations, feed temperatures, and long-term operation in different extreme chemical environments. Besides having nearly complete rejection (99.9%), the UiO-66 membrane exhibited high flux (37.4 L·m–2·h–1) for hypersaline waters, outperforming current existing zeolite and MOF membranes. The membrane also demonstrated superior long-term operational stability under various harsh environments (hypersaline, hot, and acidic/alkaline feed water) and mild fouling behavior. The rational design proposed in this study is not only applicable for the development of a high-quality UiO-66 membrane enabling harsh hypersaline water treatment but can also be potentially extended to other next-generation nanoporous MOF membranes for more environmental applications.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.1c06105</identifier><language>eng</language><publisher>Easton: American Chemical Society</publisher><subject>Desalination ; Harsh environments ; Interlayers ; Membranes ; Metal-organic frameworks ; Mullite ; Pervaporation ; Stability ; Substrates ; Thickness ; Titanium dioxide ; Treatment and Resource Recovery ; Water treatment ; Zeolites ; Zirconium</subject><ispartof>Environmental science &amp; technology, 2021-11, Vol.55 (21), p.14917-14927</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 2, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a338t-d266579e67a90796157374cc279fe9583b6016313ffbf3d8d360ba6d426b3a043</citedby><cites>FETCH-LOGICAL-a338t-d266579e67a90796157374cc279fe9583b6016313ffbf3d8d360ba6d426b3a043</cites><orcidid>0000-0003-1213-8317 ; 0000-0002-7932-6462 ; 0000-0003-1409-0994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Haotian</creatorcontrib><creatorcontrib>Fu, Mao</creatorcontrib><creatorcontrib>Wang, Shi-Qiang</creatorcontrib><creatorcontrib>Zheng, Xiangyong</creatorcontrib><creatorcontrib>Zhao, Min</creatorcontrib><creatorcontrib>Yang, Fenglin</creatorcontrib><creatorcontrib>Tang, Chuyang Y</creatorcontrib><creatorcontrib>Dong, Yingchao</creatorcontrib><title>Stable Zr-Based Metal–Organic Framework Nanoporous Membrane for Efficient Desalination of Hypersaline Water</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Treatment of hypersaline waters is a critical environmental challenge. Pervaporation (PV) desalination is a promising technique to address this challenge, but current PV membranes still suffer from challenging issues such as low flux and insufficient stability. Herein, we propose in situ nanoseeding followed by a secondary growth strategy to fabricate a high-quality stable metal–organic framework (MOF) thin membrane (UiO-66) for high-performance pervaporation desalination of hypersaline waters. To address the issue of membrane quality, a TiO2 nano-interlayer was introduced on coarse mullite substrates to favor the growth of a UiO-66 nanoseed layer, on which a well-intergrown UiO-66 selective membrane layer with thickness as low as 1 μm was finally produced via subsequent secondary growth. The PV separation performance for hypersaline waters was systematically investigated at different salt concentrations, feed temperatures, and long-term operation in different extreme chemical environments. Besides having nearly complete rejection (99.9%), the UiO-66 membrane exhibited high flux (37.4 L·m–2·h–1) for hypersaline waters, outperforming current existing zeolite and MOF membranes. The membrane also demonstrated superior long-term operational stability under various harsh environments (hypersaline, hot, and acidic/alkaline feed water) and mild fouling behavior. The rational design proposed in this study is not only applicable for the development of a high-quality UiO-66 membrane enabling harsh hypersaline water treatment but can also be potentially extended to other next-generation nanoporous MOF membranes for more environmental applications.</description><subject>Desalination</subject><subject>Harsh environments</subject><subject>Interlayers</subject><subject>Membranes</subject><subject>Metal-organic frameworks</subject><subject>Mullite</subject><subject>Pervaporation</subject><subject>Stability</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Titanium dioxide</subject><subject>Treatment and Resource Recovery</subject><subject>Water treatment</subject><subject>Zeolites</subject><subject>Zirconium</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqUws1piRGnPce3EI5SWIhU6AAKxRJfERilJHOxUqBvvwBvyJKS0YmM66e77_5M-Qk4ZDBiEbIiZH2jfDlgGkoHYIz0mQghELNg-6QEwHigunw_JkfdLAAg5xD1S3beYlpq-uOASvc7prW6x_P78WrhXrIuMTh1W-sO6N3qHtW2ssyvfQVXqsNbUWEcnxhRZoeuWXmmPZVFjW9iaWkNn60a735WmT9hqd0wODJZen-xmnzxOJw_jWTBfXN-ML-YBch63QR5KKSKlZYQKIiWZiHg0yrIwUkYrEfNUApOccWNSw_M45xJSlPkolClHGPE-Odv2Ns6-rzorydKuXN29TEKhuIKuFjpquKUyZ7132iSNKyp064RBsnGadE6TTXrntEucbxObw1_lf_QPLKd62g</recordid><startdate>20211102</startdate><enddate>20211102</enddate><creator>Li, Haotian</creator><creator>Fu, Mao</creator><creator>Wang, Shi-Qiang</creator><creator>Zheng, Xiangyong</creator><creator>Zhao, Min</creator><creator>Yang, Fenglin</creator><creator>Tang, Chuyang Y</creator><creator>Dong, Yingchao</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1213-8317</orcidid><orcidid>https://orcid.org/0000-0002-7932-6462</orcidid><orcidid>https://orcid.org/0000-0003-1409-0994</orcidid></search><sort><creationdate>20211102</creationdate><title>Stable Zr-Based Metal–Organic Framework Nanoporous Membrane for Efficient Desalination of Hypersaline Water</title><author>Li, Haotian ; Fu, Mao ; Wang, Shi-Qiang ; Zheng, Xiangyong ; Zhao, Min ; Yang, Fenglin ; Tang, Chuyang Y ; Dong, Yingchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a338t-d266579e67a90796157374cc279fe9583b6016313ffbf3d8d360ba6d426b3a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Desalination</topic><topic>Harsh environments</topic><topic>Interlayers</topic><topic>Membranes</topic><topic>Metal-organic frameworks</topic><topic>Mullite</topic><topic>Pervaporation</topic><topic>Stability</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Titanium dioxide</topic><topic>Treatment and Resource Recovery</topic><topic>Water treatment</topic><topic>Zeolites</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Haotian</creatorcontrib><creatorcontrib>Fu, Mao</creatorcontrib><creatorcontrib>Wang, Shi-Qiang</creatorcontrib><creatorcontrib>Zheng, Xiangyong</creatorcontrib><creatorcontrib>Zhao, Min</creatorcontrib><creatorcontrib>Yang, Fenglin</creatorcontrib><creatorcontrib>Tang, Chuyang Y</creatorcontrib><creatorcontrib>Dong, Yingchao</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Haotian</au><au>Fu, Mao</au><au>Wang, Shi-Qiang</au><au>Zheng, Xiangyong</au><au>Zhao, Min</au><au>Yang, Fenglin</au><au>Tang, Chuyang Y</au><au>Dong, Yingchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable Zr-Based Metal–Organic Framework Nanoporous Membrane for Efficient Desalination of Hypersaline Water</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2021-11-02</date><risdate>2021</risdate><volume>55</volume><issue>21</issue><spage>14917</spage><epage>14927</epage><pages>14917-14927</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Treatment of hypersaline waters is a critical environmental challenge. Pervaporation (PV) desalination is a promising technique to address this challenge, but current PV membranes still suffer from challenging issues such as low flux and insufficient stability. Herein, we propose in situ nanoseeding followed by a secondary growth strategy to fabricate a high-quality stable metal–organic framework (MOF) thin membrane (UiO-66) for high-performance pervaporation desalination of hypersaline waters. To address the issue of membrane quality, a TiO2 nano-interlayer was introduced on coarse mullite substrates to favor the growth of a UiO-66 nanoseed layer, on which a well-intergrown UiO-66 selective membrane layer with thickness as low as 1 μm was finally produced via subsequent secondary growth. The PV separation performance for hypersaline waters was systematically investigated at different salt concentrations, feed temperatures, and long-term operation in different extreme chemical environments. Besides having nearly complete rejection (99.9%), the UiO-66 membrane exhibited high flux (37.4 L·m–2·h–1) for hypersaline waters, outperforming current existing zeolite and MOF membranes. The membrane also demonstrated superior long-term operational stability under various harsh environments (hypersaline, hot, and acidic/alkaline feed water) and mild fouling behavior. The rational design proposed in this study is not only applicable for the development of a high-quality UiO-66 membrane enabling harsh hypersaline water treatment but can also be potentially extended to other next-generation nanoporous MOF membranes for more environmental applications.</abstract><cop>Easton</cop><pub>American Chemical Society</pub><doi>10.1021/acs.est.1c06105</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1213-8317</orcidid><orcidid>https://orcid.org/0000-0002-7932-6462</orcidid><orcidid>https://orcid.org/0000-0003-1409-0994</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2021-11, Vol.55 (21), p.14917-14927
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_journals_2593909070
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Desalination
Harsh environments
Interlayers
Membranes
Metal-organic frameworks
Mullite
Pervaporation
Stability
Substrates
Thickness
Titanium dioxide
Treatment and Resource Recovery
Water treatment
Zeolites
Zirconium
title Stable Zr-Based Metal–Organic Framework Nanoporous Membrane for Efficient Desalination of Hypersaline Water
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20Zr-Based%20Metal%E2%80%93Organic%20Framework%20Nanoporous%20Membrane%20for%20Efficient%20Desalination%20of%20Hypersaline%20Water&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Li,%20Haotian&rft.date=2021-11-02&rft.volume=55&rft.issue=21&rft.spage=14917&rft.epage=14927&rft.pages=14917-14927&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.1c06105&rft_dat=%3Cproquest_cross%3E2593909070%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a338t-d266579e67a90796157374cc279fe9583b6016313ffbf3d8d360ba6d426b3a043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2593909070&rft_id=info:pmid/&rfr_iscdi=true