Loading…

Probabilistic Analysis of Wheel Loader Failure under Rockfall Conditions Based on Bayesian Network

Rockfall is one of the most serious geological hazards in mountain regions. During the rescue situations after rockfall, the wheel loader, a vital type of modern engineering mechanism, plays an important role in relieving the obstruction of the catastrophic site. Increasing the reliability of the wh...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2021-10, Vol.2021, p.1-16
Main Authors: Feng, Zhenmin, Huang, Dongmei, Li, Zhian, Li, Rui, Sun, Yupeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rockfall is one of the most serious geological hazards in mountain regions. During the rescue situations after rockfall, the wheel loader, a vital type of modern engineering mechanism, plays an important role in relieving the obstruction of the catastrophic site. Increasing the reliability of the wheel loader during the rescue situation is quite important. This study aims to build a fault diagnosis model based on Bayesian network (BN) to diagnose the probability and path of the fault occurrence in the wheel loader during a rockfall disaster. Meanwhile, to reduce the influence of subjective factors, the fuzzy set theory is introduced into BN. The result showed that the probability of failure of the wheel loader under rockfall disaster is 13.11%. In addition, the key cause of the failure of the wheel loader under the rockfall disaster is the malfunction of mechanical parts. The probability of mechanical component failures in this case is as high as 88%, while the probability of human error is 6%. The research results not only show the ability of the BN to incorporate subjective judgment but also can provide a reference for fault diagnosis and risk assessment of wheel loaders under rockfall disaster conditions.
ISSN:1024-123X
1563-5147
DOI:10.1155/2021/2744264