Loading…

Effect of repeated hydrothermal cycling on the durability of glass fiber/epoxy composites with and without carbon nanotube reinforcement

Enhancing the performance of polymeric composites by incorporating carbon nanotube (CNT) is a current research trend. In this article, the performance of glass fiber reinforced epoxy (GE) composite with and without CNT has been observed under repeated hydrothermal cycling (HC) between 15 and 50°C wa...

Full description

Saved in:
Bibliographic Details
Published in:Polymer composites 2021-11, Vol.42 (11), p.6160-6172
Main Authors: Fulmali, Abhinav Omprakash, Sen, Bhaskar, Nayak, B. Arnimesh, Prusty, Rajesh Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Enhancing the performance of polymeric composites by incorporating carbon nanotube (CNT) is a current research trend. In this article, the performance of glass fiber reinforced epoxy (GE) composite with and without CNT has been observed under repeated hydrothermal cycling (HC) between 15 and 50°C water baths. Before carrying out the HC, the optimum concentration of CNT in the GE composite was obtained by flexural test. This study first confirms that the addition of 0.1 wt% of CNTs resulted in a 6.68% and 6.47% increment in flexural strength and modulus compared to neat GE composite. Alteration in the performance of the neat GE and 0.1 wt% CNT‐GE was then analyzed after performing HC for 20, 40, and 60 cycles by conducting mechanical (flexural), thermomechanical (dynamic mechanical thermal analysis [DMA]), chemical (Fourier transform infrared spectroscopy [FTIR]) and fractographic (scanning electron microscopy [SEM]) analysis. Degradation in the mechanical performance of the CNT embedded GE composite was found to be faster than the neat one with the increasing number of HC. The possible reason has been explained based on the evidence obtained from DMA, FTIR, and SEM analysis. Impact of secondary carbon nanotube reinforcement in glass fiber reinforced epoxy composite on the hydrothermal environmental durability.
ISSN:0272-8397
1548-0569
DOI:10.1002/pc.26293