Loading…

Multi-source data driven method for assessing the rock mass quality of a NATM tunnel face via hybrid ensemble learning models

Current assessments of rock mass quality of a NATM tunnel face are important in the practice of tunnel excavation. This study establishes a multi-source database and proposes a data driven method for the assessment. Thirteen multi-source variables describing the tunnel faces are considered as inputs...

Full description

Saved in:
Bibliographic Details
Published in:International journal of rock mechanics and mining sciences (Oxford, England : 1997) England : 1997), 2021-11, Vol.147, p.104914, Article 104914
Main Authors: Zhou, Mingliang, Chen, Jiayao, Huang, Hongwei, Zhang, Dongming, Zhao, Shuai, Shadabfar, Mahdi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a423t-a2e6c9faeeb9465e2b788aad2d4ac9eb3341733618c5615fc6c0808b7aa788513
cites cdi_FETCH-LOGICAL-a423t-a2e6c9faeeb9465e2b788aad2d4ac9eb3341733618c5615fc6c0808b7aa788513
container_end_page
container_issue
container_start_page 104914
container_title International journal of rock mechanics and mining sciences (Oxford, England : 1997)
container_volume 147
creator Zhou, Mingliang
Chen, Jiayao
Huang, Hongwei
Zhang, Dongming
Zhao, Shuai
Shadabfar, Mahdi
description Current assessments of rock mass quality of a NATM tunnel face are important in the practice of tunnel excavation. This study establishes a multi-source database and proposes a data driven method for the assessment. Thirteen multi-source variables describing the tunnel faces are considered as inputs, and the rock mass rating (RMR) values computed by the empirical formula are the target outputs. We adopted two meta machine learning models (classification and regression tree (CART) and multiple layers perceptron (MLP)) and two ensemble learning models (gradient boosting regression tree (GBRT)) and random forest (RF)) to capture the relationships between the inputs and outputs. The tree-structured Parzen estimator (TPE) algorithm is applied to automatically determine the optimized model hyper-parameters. The experimental results suggest that the proposed hybrid ensemble learning models (TPE-RF and TPE-GBRT) perform well at assessing rock mass quality. The feature importance ranks of the input variables are determined by a sensitivity analysis, which enhances the knowledge on assessing the rock mass quality of a tunnel face. [Display omitted]
doi_str_mv 10.1016/j.ijrmms.2021.104914
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2595142850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1365160921002987</els_id><sourcerecordid>2595142850</sourcerecordid><originalsourceid>FETCH-LOGICAL-a423t-a2e6c9faeeb9465e2b788aad2d4ac9eb3341733618c5615fc6c0808b7aa788513</originalsourceid><addsrcrecordid>eNp9kEFv1DAQhSMEEqXwDziMxDmL7dhOckGqKihILVzK2ZrYE9YhiVvbWWkP_He8CmdOMxq990bvq6r3nB044_rjdPBTXJZ0EEzwcpI9ly-qK961TS2VVC_L3mhVc83619WblCbGmBa6var-PGxz9nUKW7QEDjOCi_5EKyyUj8HBGCJgSpSSX39BPhLEYH_DUm7wvOHs8xnCCAjfbx4fIG_rSjOMWMJOHuF4HqJ3QGuiZZgJZsK4XoKW4GhOb6tXI86J3v2b19XPL58fb7_W9z_uvt3e3NcoRZNrFKRtPyLR0EutSAxt1yE64STanoamkbxtGs07qzRXo9WWdawbWsQiVLy5rj7suU8xPG-UsplK4bW8NEL1ikvRKVZUclfZGFKKNJqn6BeMZ8OZuYA2k9lBmwtos4Mutk-7rRSik6dokvW0WnI-ks3GBf__gL83HIn2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595142850</pqid></control><display><type>article</type><title>Multi-source data driven method for assessing the rock mass quality of a NATM tunnel face via hybrid ensemble learning models</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Zhou, Mingliang ; Chen, Jiayao ; Huang, Hongwei ; Zhang, Dongming ; Zhao, Shuai ; Shadabfar, Mahdi</creator><creatorcontrib>Zhou, Mingliang ; Chen, Jiayao ; Huang, Hongwei ; Zhang, Dongming ; Zhao, Shuai ; Shadabfar, Mahdi</creatorcontrib><description>Current assessments of rock mass quality of a NATM tunnel face are important in the practice of tunnel excavation. This study establishes a multi-source database and proposes a data driven method for the assessment. Thirteen multi-source variables describing the tunnel faces are considered as inputs, and the rock mass rating (RMR) values computed by the empirical formula are the target outputs. We adopted two meta machine learning models (classification and regression tree (CART) and multiple layers perceptron (MLP)) and two ensemble learning models (gradient boosting regression tree (GBRT)) and random forest (RF)) to capture the relationships between the inputs and outputs. The tree-structured Parzen estimator (TPE) algorithm is applied to automatically determine the optimized model hyper-parameters. The experimental results suggest that the proposed hybrid ensemble learning models (TPE-RF and TPE-GBRT) perform well at assessing rock mass quality. The feature importance ranks of the input variables are determined by a sensitivity analysis, which enhances the knowledge on assessing the rock mass quality of a tunnel face. [Display omitted]</description><identifier>ISSN: 1365-1609</identifier><identifier>EISSN: 1873-4545</identifier><identifier>DOI: 10.1016/j.ijrmms.2021.104914</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Algorithms ; Data driven ; Empirical analysis ; Ensemble learning ; Excavation ; Learning algorithms ; Machine learning ; Multi-source information ; New Austrian Tunnelling Method ; Quality assessment ; Regression analysis ; Rock mass quality ; Rock mass rating ; Rocks ; Sensitivity analysis ; Sensitivity enhancement ; Tunnel face ; Tunnels ; Weights &amp; measures</subject><ispartof>International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2021-11, Vol.147, p.104914, Article 104914</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a423t-a2e6c9faeeb9465e2b788aad2d4ac9eb3341733618c5615fc6c0808b7aa788513</citedby><cites>FETCH-LOGICAL-a423t-a2e6c9faeeb9465e2b788aad2d4ac9eb3341733618c5615fc6c0808b7aa788513</cites><orcidid>0000-0002-2640-042X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhou, Mingliang</creatorcontrib><creatorcontrib>Chen, Jiayao</creatorcontrib><creatorcontrib>Huang, Hongwei</creatorcontrib><creatorcontrib>Zhang, Dongming</creatorcontrib><creatorcontrib>Zhao, Shuai</creatorcontrib><creatorcontrib>Shadabfar, Mahdi</creatorcontrib><title>Multi-source data driven method for assessing the rock mass quality of a NATM tunnel face via hybrid ensemble learning models</title><title>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</title><description>Current assessments of rock mass quality of a NATM tunnel face are important in the practice of tunnel excavation. This study establishes a multi-source database and proposes a data driven method for the assessment. Thirteen multi-source variables describing the tunnel faces are considered as inputs, and the rock mass rating (RMR) values computed by the empirical formula are the target outputs. We adopted two meta machine learning models (classification and regression tree (CART) and multiple layers perceptron (MLP)) and two ensemble learning models (gradient boosting regression tree (GBRT)) and random forest (RF)) to capture the relationships between the inputs and outputs. The tree-structured Parzen estimator (TPE) algorithm is applied to automatically determine the optimized model hyper-parameters. The experimental results suggest that the proposed hybrid ensemble learning models (TPE-RF and TPE-GBRT) perform well at assessing rock mass quality. The feature importance ranks of the input variables are determined by a sensitivity analysis, which enhances the knowledge on assessing the rock mass quality of a tunnel face. [Display omitted]</description><subject>Algorithms</subject><subject>Data driven</subject><subject>Empirical analysis</subject><subject>Ensemble learning</subject><subject>Excavation</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Multi-source information</subject><subject>New Austrian Tunnelling Method</subject><subject>Quality assessment</subject><subject>Regression analysis</subject><subject>Rock mass quality</subject><subject>Rock mass rating</subject><subject>Rocks</subject><subject>Sensitivity analysis</subject><subject>Sensitivity enhancement</subject><subject>Tunnel face</subject><subject>Tunnels</subject><subject>Weights &amp; measures</subject><issn>1365-1609</issn><issn>1873-4545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1DAQhSMEEqXwDziMxDmL7dhOckGqKihILVzK2ZrYE9YhiVvbWWkP_He8CmdOMxq990bvq6r3nB044_rjdPBTXJZ0EEzwcpI9ly-qK961TS2VVC_L3mhVc83619WblCbGmBa6var-PGxz9nUKW7QEDjOCi_5EKyyUj8HBGCJgSpSSX39BPhLEYH_DUm7wvOHs8xnCCAjfbx4fIG_rSjOMWMJOHuF4HqJ3QGuiZZgJZsK4XoKW4GhOb6tXI86J3v2b19XPL58fb7_W9z_uvt3e3NcoRZNrFKRtPyLR0EutSAxt1yE64STanoamkbxtGs07qzRXo9WWdawbWsQiVLy5rj7suU8xPG-UsplK4bW8NEL1ikvRKVZUclfZGFKKNJqn6BeMZ8OZuYA2k9lBmwtos4Mutk-7rRSik6dokvW0WnI-ks3GBf__gL83HIn2</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Zhou, Mingliang</creator><creator>Chen, Jiayao</creator><creator>Huang, Hongwei</creator><creator>Zhang, Dongming</creator><creator>Zhao, Shuai</creator><creator>Shadabfar, Mahdi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-2640-042X</orcidid></search><sort><creationdate>202111</creationdate><title>Multi-source data driven method for assessing the rock mass quality of a NATM tunnel face via hybrid ensemble learning models</title><author>Zhou, Mingliang ; Chen, Jiayao ; Huang, Hongwei ; Zhang, Dongming ; Zhao, Shuai ; Shadabfar, Mahdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a423t-a2e6c9faeeb9465e2b788aad2d4ac9eb3341733618c5615fc6c0808b7aa788513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Data driven</topic><topic>Empirical analysis</topic><topic>Ensemble learning</topic><topic>Excavation</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Multi-source information</topic><topic>New Austrian Tunnelling Method</topic><topic>Quality assessment</topic><topic>Regression analysis</topic><topic>Rock mass quality</topic><topic>Rock mass rating</topic><topic>Rocks</topic><topic>Sensitivity analysis</topic><topic>Sensitivity enhancement</topic><topic>Tunnel face</topic><topic>Tunnels</topic><topic>Weights &amp; measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Mingliang</creatorcontrib><creatorcontrib>Chen, Jiayao</creatorcontrib><creatorcontrib>Huang, Hongwei</creatorcontrib><creatorcontrib>Zhang, Dongming</creatorcontrib><creatorcontrib>Zhao, Shuai</creatorcontrib><creatorcontrib>Shadabfar, Mahdi</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Mingliang</au><au>Chen, Jiayao</au><au>Huang, Hongwei</au><au>Zhang, Dongming</au><au>Zhao, Shuai</au><au>Shadabfar, Mahdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-source data driven method for assessing the rock mass quality of a NATM tunnel face via hybrid ensemble learning models</atitle><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle><date>2021-11</date><risdate>2021</risdate><volume>147</volume><spage>104914</spage><pages>104914-</pages><artnum>104914</artnum><issn>1365-1609</issn><eissn>1873-4545</eissn><abstract>Current assessments of rock mass quality of a NATM tunnel face are important in the practice of tunnel excavation. This study establishes a multi-source database and proposes a data driven method for the assessment. Thirteen multi-source variables describing the tunnel faces are considered as inputs, and the rock mass rating (RMR) values computed by the empirical formula are the target outputs. We adopted two meta machine learning models (classification and regression tree (CART) and multiple layers perceptron (MLP)) and two ensemble learning models (gradient boosting regression tree (GBRT)) and random forest (RF)) to capture the relationships between the inputs and outputs. The tree-structured Parzen estimator (TPE) algorithm is applied to automatically determine the optimized model hyper-parameters. The experimental results suggest that the proposed hybrid ensemble learning models (TPE-RF and TPE-GBRT) perform well at assessing rock mass quality. The feature importance ranks of the input variables are determined by a sensitivity analysis, which enhances the knowledge on assessing the rock mass quality of a tunnel face. [Display omitted]</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmms.2021.104914</doi><orcidid>https://orcid.org/0000-0002-2640-042X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1365-1609
ispartof International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2021-11, Vol.147, p.104914, Article 104914
issn 1365-1609
1873-4545
language eng
recordid cdi_proquest_journals_2595142850
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Algorithms
Data driven
Empirical analysis
Ensemble learning
Excavation
Learning algorithms
Machine learning
Multi-source information
New Austrian Tunnelling Method
Quality assessment
Regression analysis
Rock mass quality
Rock mass rating
Rocks
Sensitivity analysis
Sensitivity enhancement
Tunnel face
Tunnels
Weights & measures
title Multi-source data driven method for assessing the rock mass quality of a NATM tunnel face via hybrid ensemble learning models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-source%20data%20driven%20method%20for%20assessing%20the%20rock%20mass%20quality%20of%20a%20NATM%20tunnel%20face%20via%20hybrid%20ensemble%20learning%20models&rft.jtitle=International%20journal%20of%20rock%20mechanics%20and%20mining%20sciences%20(Oxford,%20England%20:%201997)&rft.au=Zhou,%20Mingliang&rft.date=2021-11&rft.volume=147&rft.spage=104914&rft.pages=104914-&rft.artnum=104914&rft.issn=1365-1609&rft.eissn=1873-4545&rft_id=info:doi/10.1016/j.ijrmms.2021.104914&rft_dat=%3Cproquest_cross%3E2595142850%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a423t-a2e6c9faeeb9465e2b788aad2d4ac9eb3341733618c5615fc6c0808b7aa788513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2595142850&rft_id=info:pmid/&rfr_iscdi=true