Loading…
Multi-source data driven method for assessing the rock mass quality of a NATM tunnel face via hybrid ensemble learning models
Current assessments of rock mass quality of a NATM tunnel face are important in the practice of tunnel excavation. This study establishes a multi-source database and proposes a data driven method for the assessment. Thirteen multi-source variables describing the tunnel faces are considered as inputs...
Saved in:
Published in: | International journal of rock mechanics and mining sciences (Oxford, England : 1997) England : 1997), 2021-11, Vol.147, p.104914, Article 104914 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a423t-a2e6c9faeeb9465e2b788aad2d4ac9eb3341733618c5615fc6c0808b7aa788513 |
---|---|
cites | cdi_FETCH-LOGICAL-a423t-a2e6c9faeeb9465e2b788aad2d4ac9eb3341733618c5615fc6c0808b7aa788513 |
container_end_page | |
container_issue | |
container_start_page | 104914 |
container_title | International journal of rock mechanics and mining sciences (Oxford, England : 1997) |
container_volume | 147 |
creator | Zhou, Mingliang Chen, Jiayao Huang, Hongwei Zhang, Dongming Zhao, Shuai Shadabfar, Mahdi |
description | Current assessments of rock mass quality of a NATM tunnel face are important in the practice of tunnel excavation. This study establishes a multi-source database and proposes a data driven method for the assessment. Thirteen multi-source variables describing the tunnel faces are considered as inputs, and the rock mass rating (RMR) values computed by the empirical formula are the target outputs. We adopted two meta machine learning models (classification and regression tree (CART) and multiple layers perceptron (MLP)) and two ensemble learning models (gradient boosting regression tree (GBRT)) and random forest (RF)) to capture the relationships between the inputs and outputs. The tree-structured Parzen estimator (TPE) algorithm is applied to automatically determine the optimized model hyper-parameters. The experimental results suggest that the proposed hybrid ensemble learning models (TPE-RF and TPE-GBRT) perform well at assessing rock mass quality. The feature importance ranks of the input variables are determined by a sensitivity analysis, which enhances the knowledge on assessing the rock mass quality of a tunnel face.
[Display omitted] |
doi_str_mv | 10.1016/j.ijrmms.2021.104914 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2595142850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1365160921002987</els_id><sourcerecordid>2595142850</sourcerecordid><originalsourceid>FETCH-LOGICAL-a423t-a2e6c9faeeb9465e2b788aad2d4ac9eb3341733618c5615fc6c0808b7aa788513</originalsourceid><addsrcrecordid>eNp9kEFv1DAQhSMEEqXwDziMxDmL7dhOckGqKihILVzK2ZrYE9YhiVvbWWkP_He8CmdOMxq990bvq6r3nB044_rjdPBTXJZ0EEzwcpI9ly-qK961TS2VVC_L3mhVc83619WblCbGmBa6var-PGxz9nUKW7QEDjOCi_5EKyyUj8HBGCJgSpSSX39BPhLEYH_DUm7wvOHs8xnCCAjfbx4fIG_rSjOMWMJOHuF4HqJ3QGuiZZgJZsK4XoKW4GhOb6tXI86J3v2b19XPL58fb7_W9z_uvt3e3NcoRZNrFKRtPyLR0EutSAxt1yE64STanoamkbxtGs07qzRXo9WWdawbWsQiVLy5rj7suU8xPG-UsplK4bW8NEL1ikvRKVZUclfZGFKKNJqn6BeMZ8OZuYA2k9lBmwtos4Mutk-7rRSik6dokvW0WnI-ks3GBf__gL83HIn2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595142850</pqid></control><display><type>article</type><title>Multi-source data driven method for assessing the rock mass quality of a NATM tunnel face via hybrid ensemble learning models</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Zhou, Mingliang ; Chen, Jiayao ; Huang, Hongwei ; Zhang, Dongming ; Zhao, Shuai ; Shadabfar, Mahdi</creator><creatorcontrib>Zhou, Mingliang ; Chen, Jiayao ; Huang, Hongwei ; Zhang, Dongming ; Zhao, Shuai ; Shadabfar, Mahdi</creatorcontrib><description>Current assessments of rock mass quality of a NATM tunnel face are important in the practice of tunnel excavation. This study establishes a multi-source database and proposes a data driven method for the assessment. Thirteen multi-source variables describing the tunnel faces are considered as inputs, and the rock mass rating (RMR) values computed by the empirical formula are the target outputs. We adopted two meta machine learning models (classification and regression tree (CART) and multiple layers perceptron (MLP)) and two ensemble learning models (gradient boosting regression tree (GBRT)) and random forest (RF)) to capture the relationships between the inputs and outputs. The tree-structured Parzen estimator (TPE) algorithm is applied to automatically determine the optimized model hyper-parameters. The experimental results suggest that the proposed hybrid ensemble learning models (TPE-RF and TPE-GBRT) perform well at assessing rock mass quality. The feature importance ranks of the input variables are determined by a sensitivity analysis, which enhances the knowledge on assessing the rock mass quality of a tunnel face.
[Display omitted]</description><identifier>ISSN: 1365-1609</identifier><identifier>EISSN: 1873-4545</identifier><identifier>DOI: 10.1016/j.ijrmms.2021.104914</identifier><language>eng</language><publisher>Berlin: Elsevier Ltd</publisher><subject>Algorithms ; Data driven ; Empirical analysis ; Ensemble learning ; Excavation ; Learning algorithms ; Machine learning ; Multi-source information ; New Austrian Tunnelling Method ; Quality assessment ; Regression analysis ; Rock mass quality ; Rock mass rating ; Rocks ; Sensitivity analysis ; Sensitivity enhancement ; Tunnel face ; Tunnels ; Weights & measures</subject><ispartof>International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2021-11, Vol.147, p.104914, Article 104914</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a423t-a2e6c9faeeb9465e2b788aad2d4ac9eb3341733618c5615fc6c0808b7aa788513</citedby><cites>FETCH-LOGICAL-a423t-a2e6c9faeeb9465e2b788aad2d4ac9eb3341733618c5615fc6c0808b7aa788513</cites><orcidid>0000-0002-2640-042X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhou, Mingliang</creatorcontrib><creatorcontrib>Chen, Jiayao</creatorcontrib><creatorcontrib>Huang, Hongwei</creatorcontrib><creatorcontrib>Zhang, Dongming</creatorcontrib><creatorcontrib>Zhao, Shuai</creatorcontrib><creatorcontrib>Shadabfar, Mahdi</creatorcontrib><title>Multi-source data driven method for assessing the rock mass quality of a NATM tunnel face via hybrid ensemble learning models</title><title>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</title><description>Current assessments of rock mass quality of a NATM tunnel face are important in the practice of tunnel excavation. This study establishes a multi-source database and proposes a data driven method for the assessment. Thirteen multi-source variables describing the tunnel faces are considered as inputs, and the rock mass rating (RMR) values computed by the empirical formula are the target outputs. We adopted two meta machine learning models (classification and regression tree (CART) and multiple layers perceptron (MLP)) and two ensemble learning models (gradient boosting regression tree (GBRT)) and random forest (RF)) to capture the relationships between the inputs and outputs. The tree-structured Parzen estimator (TPE) algorithm is applied to automatically determine the optimized model hyper-parameters. The experimental results suggest that the proposed hybrid ensemble learning models (TPE-RF and TPE-GBRT) perform well at assessing rock mass quality. The feature importance ranks of the input variables are determined by a sensitivity analysis, which enhances the knowledge on assessing the rock mass quality of a tunnel face.
[Display omitted]</description><subject>Algorithms</subject><subject>Data driven</subject><subject>Empirical analysis</subject><subject>Ensemble learning</subject><subject>Excavation</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Multi-source information</subject><subject>New Austrian Tunnelling Method</subject><subject>Quality assessment</subject><subject>Regression analysis</subject><subject>Rock mass quality</subject><subject>Rock mass rating</subject><subject>Rocks</subject><subject>Sensitivity analysis</subject><subject>Sensitivity enhancement</subject><subject>Tunnel face</subject><subject>Tunnels</subject><subject>Weights & measures</subject><issn>1365-1609</issn><issn>1873-4545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1DAQhSMEEqXwDziMxDmL7dhOckGqKihILVzK2ZrYE9YhiVvbWWkP_He8CmdOMxq990bvq6r3nB044_rjdPBTXJZ0EEzwcpI9ly-qK961TS2VVC_L3mhVc83619WblCbGmBa6var-PGxz9nUKW7QEDjOCi_5EKyyUj8HBGCJgSpSSX39BPhLEYH_DUm7wvOHs8xnCCAjfbx4fIG_rSjOMWMJOHuF4HqJ3QGuiZZgJZsK4XoKW4GhOb6tXI86J3v2b19XPL58fb7_W9z_uvt3e3NcoRZNrFKRtPyLR0EutSAxt1yE64STanoamkbxtGs07qzRXo9WWdawbWsQiVLy5rj7suU8xPG-UsplK4bW8NEL1ikvRKVZUclfZGFKKNJqn6BeMZ8OZuYA2k9lBmwtos4Mutk-7rRSik6dokvW0WnI-ks3GBf__gL83HIn2</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Zhou, Mingliang</creator><creator>Chen, Jiayao</creator><creator>Huang, Hongwei</creator><creator>Zhang, Dongming</creator><creator>Zhao, Shuai</creator><creator>Shadabfar, Mahdi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-2640-042X</orcidid></search><sort><creationdate>202111</creationdate><title>Multi-source data driven method for assessing the rock mass quality of a NATM tunnel face via hybrid ensemble learning models</title><author>Zhou, Mingliang ; Chen, Jiayao ; Huang, Hongwei ; Zhang, Dongming ; Zhao, Shuai ; Shadabfar, Mahdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a423t-a2e6c9faeeb9465e2b788aad2d4ac9eb3341733618c5615fc6c0808b7aa788513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Data driven</topic><topic>Empirical analysis</topic><topic>Ensemble learning</topic><topic>Excavation</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Multi-source information</topic><topic>New Austrian Tunnelling Method</topic><topic>Quality assessment</topic><topic>Regression analysis</topic><topic>Rock mass quality</topic><topic>Rock mass rating</topic><topic>Rocks</topic><topic>Sensitivity analysis</topic><topic>Sensitivity enhancement</topic><topic>Tunnel face</topic><topic>Tunnels</topic><topic>Weights & measures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Mingliang</creatorcontrib><creatorcontrib>Chen, Jiayao</creatorcontrib><creatorcontrib>Huang, Hongwei</creatorcontrib><creatorcontrib>Zhang, Dongming</creatorcontrib><creatorcontrib>Zhao, Shuai</creatorcontrib><creatorcontrib>Shadabfar, Mahdi</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Mingliang</au><au>Chen, Jiayao</au><au>Huang, Hongwei</au><au>Zhang, Dongming</au><au>Zhao, Shuai</au><au>Shadabfar, Mahdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-source data driven method for assessing the rock mass quality of a NATM tunnel face via hybrid ensemble learning models</atitle><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle><date>2021-11</date><risdate>2021</risdate><volume>147</volume><spage>104914</spage><pages>104914-</pages><artnum>104914</artnum><issn>1365-1609</issn><eissn>1873-4545</eissn><abstract>Current assessments of rock mass quality of a NATM tunnel face are important in the practice of tunnel excavation. This study establishes a multi-source database and proposes a data driven method for the assessment. Thirteen multi-source variables describing the tunnel faces are considered as inputs, and the rock mass rating (RMR) values computed by the empirical formula are the target outputs. We adopted two meta machine learning models (classification and regression tree (CART) and multiple layers perceptron (MLP)) and two ensemble learning models (gradient boosting regression tree (GBRT)) and random forest (RF)) to capture the relationships between the inputs and outputs. The tree-structured Parzen estimator (TPE) algorithm is applied to automatically determine the optimized model hyper-parameters. The experimental results suggest that the proposed hybrid ensemble learning models (TPE-RF and TPE-GBRT) perform well at assessing rock mass quality. The feature importance ranks of the input variables are determined by a sensitivity analysis, which enhances the knowledge on assessing the rock mass quality of a tunnel face.
[Display omitted]</abstract><cop>Berlin</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmms.2021.104914</doi><orcidid>https://orcid.org/0000-0002-2640-042X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-1609 |
ispartof | International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2021-11, Vol.147, p.104914, Article 104914 |
issn | 1365-1609 1873-4545 |
language | eng |
recordid | cdi_proquest_journals_2595142850 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Algorithms Data driven Empirical analysis Ensemble learning Excavation Learning algorithms Machine learning Multi-source information New Austrian Tunnelling Method Quality assessment Regression analysis Rock mass quality Rock mass rating Rocks Sensitivity analysis Sensitivity enhancement Tunnel face Tunnels Weights & measures |
title | Multi-source data driven method for assessing the rock mass quality of a NATM tunnel face via hybrid ensemble learning models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-source%20data%20driven%20method%20for%20assessing%20the%20rock%20mass%20quality%20of%20a%20NATM%20tunnel%20face%20via%20hybrid%20ensemble%20learning%20models&rft.jtitle=International%20journal%20of%20rock%20mechanics%20and%20mining%20sciences%20(Oxford,%20England%20:%201997)&rft.au=Zhou,%20Mingliang&rft.date=2021-11&rft.volume=147&rft.spage=104914&rft.pages=104914-&rft.artnum=104914&rft.issn=1365-1609&rft.eissn=1873-4545&rft_id=info:doi/10.1016/j.ijrmms.2021.104914&rft_dat=%3Cproquest_cross%3E2595142850%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a423t-a2e6c9faeeb9465e2b788aad2d4ac9eb3341733618c5615fc6c0808b7aa788513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2595142850&rft_id=info:pmid/&rfr_iscdi=true |