Loading…

An experimental analysis on evolutionary ontology meta-matching

Every year, new ontology matching approaches have been published to address the heterogeneity problem in ontologies. It is well known that no one is able to stand out from others in all aspects. An ontology meta-matcher combines different alignment techniques to explore various aspects of heterogene...

Full description

Saved in:
Bibliographic Details
Published in:Knowledge and information systems 2021-11, Vol.63 (11), p.2919-2946
Main Authors: Ferranti, Nicolas, de Souza, Jairo Francisco, Sã Rosário Furtado Soares, Stênio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Every year, new ontology matching approaches have been published to address the heterogeneity problem in ontologies. It is well known that no one is able to stand out from others in all aspects. An ontology meta-matcher combines different alignment techniques to explore various aspects of heterogeneity to avoid the alignment performance being restricted to some ontology characteristics. The meta-matching process consists of several stages of execution, and sometimes the contribution/cost of each algorithm is not clear when evaluating an approach. This article presents the evaluation of solutions commonly used in the literature in order to provide more knowledge about the ontology meta-matching problem. Results showed that the more characteristics of the entities that can be captured by similarity measures set, the greater the accuracy of the model. It was also possible to observe the good performance and accuracy of local search-based meta-heuristics when compared to global optimization meta-heuristics. Experiments with different objective functions have shown that semi-supervised methods can shorten the execution time of the experiment but, on the other hand, bring more instability to the result.
ISSN:0219-1377
0219-3116
DOI:10.1007/s10115-021-01613-0