Loading…
The divisibility of the class number of the imaginary quadratic fields \(\mathbb{Q}(\sqrt{1-2m^k})\)
Let \(h_{(m,k)}\) be the class number of \(\mathbb{Q}(\sqrt{1-2m^k}).\) We prove that for any odd natural number \(k,\) there exists \(m_0\) such that \(k \mid h_{(m,k)}\) for all odd \(m > m_0.\) We also prove that for any odd \(m \geq 3,\) \(k \mid h_{(m,k)}\) (when \(k\) and \(1-2m^k\) square-...
Saved in:
Published in: | arXiv.org 2024-03 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Krishnamoorthy, Srilakshmi Muneeswaran, R |
description | Let \(h_{(m,k)}\) be the class number of \(\mathbb{Q}(\sqrt{1-2m^k}).\) We prove that for any odd natural number \(k,\) there exists \(m_0\) such that \(k \mid h_{(m,k)}\) for all odd \(m > m_0.\) We also prove that for any odd \(m \geq 3,\) \(k \mid h_{(m,k)}\) (when \(k\) and \(1-2m^k\) square-free numbers) and \(p \mid h_{(m,p)}\) (except finitely many primes \(p\)). We deduce that for any pair of twin primes \(p_1,p_2=p_1+2\), \(p_1 \mid h_{(m,p_1)}\) or \(p_2 \mid h_{(m,p_2)}.\) For any odd natural number \(k\), we construct an infinite family of pairs of imaginary quadratic fields \(\mathbb{Q}(\sqrt{d}), \mathbb{Q}(\sqrt{d+1})\) whose class numbers are divisible by \(k\), which settles a generalized version of Iizuka's conjecture (cf : Conjecture 2.2) for the case \(n=1\). |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2595322044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595322044</sourcerecordid><originalsourceid>FETCH-proquest_journals_25953220443</originalsourceid><addsrcrecordid>eNqNik0LgkAUAJcgSKr_sNClDoK-dfs4R9E16CjFmms9WzX3rYFI_z0Pde80MDMD5oEQob-OAEZsSpQHQQDLFUgpPJae7pqn-ELCBA26llcZd727GkXEy6ZItP05LNQNS2VbXjcqtcrhlWeoTUo8nseFcvck6Y7veUy1dV3oQ3F-vBfxYsKGmTKkp1-O2Wy_O20P_tNWdaPJXfKqsWWfLiA3UgAEUST-uz7x1UXZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595322044</pqid></control><display><type>article</type><title>The divisibility of the class number of the imaginary quadratic fields \(\mathbb{Q}(\sqrt{1-2m^k})\)</title><source>Publicly Available Content (ProQuest)</source><creator>Krishnamoorthy, Srilakshmi ; Muneeswaran, R</creator><creatorcontrib>Krishnamoorthy, Srilakshmi ; Muneeswaran, R</creatorcontrib><description>Let \(h_{(m,k)}\) be the class number of \(\mathbb{Q}(\sqrt{1-2m^k}).\) We prove that for any odd natural number \(k,\) there exists \(m_0\) such that \(k \mid h_{(m,k)}\) for all odd \(m > m_0.\) We also prove that for any odd \(m \geq 3,\) \(k \mid h_{(m,k)}\) (when \(k\) and \(1-2m^k\) square-free numbers) and \(p \mid h_{(m,p)}\) (except finitely many primes \(p\)). We deduce that for any pair of twin primes \(p_1,p_2=p_1+2\), \(p_1 \mid h_{(m,p_1)}\) or \(p_2 \mid h_{(m,p_2)}.\) For any odd natural number \(k\), we construct an infinite family of pairs of imaginary quadratic fields \(\mathbb{Q}(\sqrt{d}), \mathbb{Q}(\sqrt{d+1})\) whose class numbers are divisible by \(k\), which settles a generalized version of Iizuka's conjecture (cf : Conjecture 2.2) for the case \(n=1\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Fields (mathematics) ; Integers ; Number theory</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2595322044?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Krishnamoorthy, Srilakshmi</creatorcontrib><creatorcontrib>Muneeswaran, R</creatorcontrib><title>The divisibility of the class number of the imaginary quadratic fields \(\mathbb{Q}(\sqrt{1-2m^k})\)</title><title>arXiv.org</title><description>Let \(h_{(m,k)}\) be the class number of \(\mathbb{Q}(\sqrt{1-2m^k}).\) We prove that for any odd natural number \(k,\) there exists \(m_0\) such that \(k \mid h_{(m,k)}\) for all odd \(m > m_0.\) We also prove that for any odd \(m \geq 3,\) \(k \mid h_{(m,k)}\) (when \(k\) and \(1-2m^k\) square-free numbers) and \(p \mid h_{(m,p)}\) (except finitely many primes \(p\)). We deduce that for any pair of twin primes \(p_1,p_2=p_1+2\), \(p_1 \mid h_{(m,p_1)}\) or \(p_2 \mid h_{(m,p_2)}.\) For any odd natural number \(k\), we construct an infinite family of pairs of imaginary quadratic fields \(\mathbb{Q}(\sqrt{d}), \mathbb{Q}(\sqrt{d+1})\) whose class numbers are divisible by \(k\), which settles a generalized version of Iizuka's conjecture (cf : Conjecture 2.2) for the case \(n=1\).</description><subject>Fields (mathematics)</subject><subject>Integers</subject><subject>Number theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNik0LgkAUAJcgSKr_sNClDoK-dfs4R9E16CjFmms9WzX3rYFI_z0Pde80MDMD5oEQob-OAEZsSpQHQQDLFUgpPJae7pqn-ELCBA26llcZd727GkXEy6ZItP05LNQNS2VbXjcqtcrhlWeoTUo8nseFcvck6Y7veUy1dV3oQ3F-vBfxYsKGmTKkp1-O2Wy_O20P_tNWdaPJXfKqsWWfLiA3UgAEUST-uz7x1UXZ</recordid><startdate>20240305</startdate><enddate>20240305</enddate><creator>Krishnamoorthy, Srilakshmi</creator><creator>Muneeswaran, R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240305</creationdate><title>The divisibility of the class number of the imaginary quadratic fields \(\mathbb{Q}(\sqrt{1-2m^k})\)</title><author>Krishnamoorthy, Srilakshmi ; Muneeswaran, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25953220443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Fields (mathematics)</topic><topic>Integers</topic><topic>Number theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Krishnamoorthy, Srilakshmi</creatorcontrib><creatorcontrib>Muneeswaran, R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnamoorthy, Srilakshmi</au><au>Muneeswaran, R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The divisibility of the class number of the imaginary quadratic fields \(\mathbb{Q}(\sqrt{1-2m^k})\)</atitle><jtitle>arXiv.org</jtitle><date>2024-03-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Let \(h_{(m,k)}\) be the class number of \(\mathbb{Q}(\sqrt{1-2m^k}).\) We prove that for any odd natural number \(k,\) there exists \(m_0\) such that \(k \mid h_{(m,k)}\) for all odd \(m > m_0.\) We also prove that for any odd \(m \geq 3,\) \(k \mid h_{(m,k)}\) (when \(k\) and \(1-2m^k\) square-free numbers) and \(p \mid h_{(m,p)}\) (except finitely many primes \(p\)). We deduce that for any pair of twin primes \(p_1,p_2=p_1+2\), \(p_1 \mid h_{(m,p_1)}\) or \(p_2 \mid h_{(m,p_2)}.\) For any odd natural number \(k\), we construct an infinite family of pairs of imaginary quadratic fields \(\mathbb{Q}(\sqrt{d}), \mathbb{Q}(\sqrt{d+1})\) whose class numbers are divisible by \(k\), which settles a generalized version of Iizuka's conjecture (cf : Conjecture 2.2) for the case \(n=1\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2595322044 |
source | Publicly Available Content (ProQuest) |
subjects | Fields (mathematics) Integers Number theory |
title | The divisibility of the class number of the imaginary quadratic fields \(\mathbb{Q}(\sqrt{1-2m^k})\) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20divisibility%20of%20the%20class%20number%20of%20the%20imaginary%20quadratic%20fields%20%5C(%5Cmathbb%7BQ%7D(%5Csqrt%7B1-2m%5Ek%7D)%5C)&rft.jtitle=arXiv.org&rft.au=Krishnamoorthy,%20Srilakshmi&rft.date=2024-03-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2595322044%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_25953220443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2595322044&rft_id=info:pmid/&rfr_iscdi=true |