Loading…

Cosmology with Love: Measuring the Hubble constant using neutron star universal relations

Gravitational-wave cosmology began in 2017 with the observation of the gravitational waves emitted in the merger of two neutron stars, and the coincident observation of the electromagnetic emission that followed. Although only a 30% measurement of the Hubble constant was achieved, future observation...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. D 2021-10, Vol.104 (8), p.1, Article 083528
Main Authors: Chatterjee, Deep, Hegade K. R., Abhishek, Holder, Gilbert, Holz, Daniel E., Perkins, Scott, Yagi, Kent, Yunes, Nicolás
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gravitational-wave cosmology began in 2017 with the observation of the gravitational waves emitted in the merger of two neutron stars, and the coincident observation of the electromagnetic emission that followed. Although only a 30% measurement of the Hubble constant was achieved, future observations may yield more precise measurements either through other coincident events or through cross correlation of gravitational-wave events with galaxy catalogs. Here, we implement a new way to measure the Hubble constant without an electromagnetic counterpart and through the use of the binary-Love relations. These relations govern the tidal deformabilities of neutron stars in an equation of state insensitive way. Importantly, the Love relations depend on the component masses of the binary in the source frame. Since the gravitational-wave phase and amplitude depend on the chirp mass in the observer (and hence redshifted) frame, one can in principle combine the binary-Love relations with the gravitational-wave data to directly measure the redshift, and thereby infer the value of the Hubble constant. We implement this approach in both real and synthetic data through a Bayesian parameter estimation study in a range of observing scenarios. We find that for the LIGO/Virgo/KAGRA design sensitivity era, this method results in a similar measurement accuracy of the Hubble constant to those of current-day, dark-siren measurements. For third-generation detectors, this accuracy improves to ≲ 10 % when combining measurements from binary neutron star events in the LIGO Voyager era, and to ≲ 2 % in the Cosmic Explorer era.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.104.083528