Loading…
Sedimentological and carbonate isotope signatures to identify fluvial processes and catchment changes in a supposed impact ejecta‐dammed lake (Miocene, Germany)
The identification and distinction of fluvial from lacustrine deposits and the recognition of catchment changes are crucial for the reconstruction of climate changes in terrestrial environments. The investigated drill core succession shows a general evolution from red–brown claystones to white–grey...
Saved in:
Published in: | Sedimentology 2021-12, Vol.68 (7), p.2965-2995 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a3558-47b1a13692e2bb6391e3d602c0575ba72e868dfb068b9b1eada5c1f745590e3 |
---|---|
cites | cdi_FETCH-LOGICAL-a3558-47b1a13692e2bb6391e3d602c0575ba72e868dfb068b9b1eada5c1f745590e3 |
container_end_page | 2995 |
container_issue | 7 |
container_start_page | 2965 |
container_title | Sedimentology |
container_volume | 68 |
creator | Zeng, Lingqi Ruge, Dag B. Berger, Günther Heck, Karin Hölzl, Stefan Reimer, Andreas Jung, Dietmar Arp, Gernot Arenas, Concha |
description | The identification and distinction of fluvial from lacustrine deposits and the recognition of catchment changes are crucial for the reconstruction of climate changes in terrestrial environments. The investigated drill core succession shows a general evolution from red–brown claystones to white–grey marlstones and microcrystalline limestones, which all have previously been considered as relict deposits of an impact ejecta‐dammed lake, falling within the mid‐Miocene Climate Transition. However, recent mammal biostratigraphic dating suggests a likely pre‐impact age. Indeed, no pebbles from impact ejecta have been detected; only local clasts of Mesozoic formations, in addition to rare Palaeozoic lydites from outside of the study area. Lithofacies analysis demonstrates only the absence of lacustrine criteria, except for one charophyte‐bearing mudstone. Instead, the succession is characterized by less diagnostic floodplain fines with palaeosols, palustrine limestones with root voids and intercalated thin sandstone beds. Carbonate isotope signatures of the mottled marlstones, palustrine limestones and mud‐supported conglomerates substantiate the interpretation of a fluvial setting. Low, invariant δ18Ocarb reflects a short water residence time and highly variable δ13Ccarb indicates a variable degree of pedogenesis. Carbonate 87Sr/86Sr ratios of the entire succession show a unidirectional trend from 0.7103 to 0.7112, indicating a change of the solute provenance from Triassic to Jurassic rocks, identical to the provenance trend from extraclasts. The increase in carbonate along the succession is therefore independent from climate changes but reflects a base‐level rise from the level of the siliciclastic Upper Triassic to the carbonate‐bearing Lower to Middle Jurassic bedrocks. This study demonstrates that, when information on sedimentary architecture is limited, a combination of facies criteria (i.e. presence or absence of specific sedimentary structures and diagnostic organisms), component provenance, and stable and radiogenic isotopes is required to unequivocally distinguish between lacustrine and fluvial sediments, and to disentangle regional geological effects in the catchment and climate influences. |
doi_str_mv | 10.1111/sed.12888 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2595693299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2595693299</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3558-47b1a13692e2bb6391e3d602c0575ba72e868dfb068b9b1eada5c1f745590e3</originalsourceid><addsrcrecordid>eNp1kU1OwzAQhS0EEuVnwQ0ssQGJtHZSJ_ESlfIjgViUfTRxJsUliYOdgLLjCJyBo3ESXMIWb0ae-d6zn4aQE86m3J-Zw2LKwzRNd8iER7EIIib5LpkwFiUBS-bxPjlwbsMYj-epnJCvFRa6xqYzlVlrBRWFpqAKbG4a6JBqZzrTInV67e-9RUc7Q3XhFbocaFn1b9qLWmsUOueno7xTz1tTqp6hWfuubihQ17et8R-kum5BdRQ3qDr4_vgsoK59u4IXpGcP2ls1eEFv0NbQDOdHZK-EyuHxXz0kq-vl0-I2uH-8uVtc3gcQCZEG8yTn4CPLEMM8jyPJMSpiFiomEpFDEmIap0WZszjNZc4RChCKl8lcCMkwOiSno6uP8tqj67KN6W3jH8xCIUUso1BKT52PlLLGOYtl1lpdgx0yzrLtAjKfL_tdgGdnI_uuKxz-B7PV8mpU_AAye4uj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595693299</pqid></control><display><type>article</type><title>Sedimentological and carbonate isotope signatures to identify fluvial processes and catchment changes in a supposed impact ejecta‐dammed lake (Miocene, Germany)</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zeng, Lingqi ; Ruge, Dag B. ; Berger, Günther ; Heck, Karin ; Hölzl, Stefan ; Reimer, Andreas ; Jung, Dietmar ; Arp, Gernot ; Arenas, Concha</creator><contributor>Arenas, Concha</contributor><creatorcontrib>Zeng, Lingqi ; Ruge, Dag B. ; Berger, Günther ; Heck, Karin ; Hölzl, Stefan ; Reimer, Andreas ; Jung, Dietmar ; Arp, Gernot ; Arenas, Concha ; Arenas, Concha</creatorcontrib><description>The identification and distinction of fluvial from lacustrine deposits and the recognition of catchment changes are crucial for the reconstruction of climate changes in terrestrial environments. The investigated drill core succession shows a general evolution from red–brown claystones to white–grey marlstones and microcrystalline limestones, which all have previously been considered as relict deposits of an impact ejecta‐dammed lake, falling within the mid‐Miocene Climate Transition. However, recent mammal biostratigraphic dating suggests a likely pre‐impact age. Indeed, no pebbles from impact ejecta have been detected; only local clasts of Mesozoic formations, in addition to rare Palaeozoic lydites from outside of the study area. Lithofacies analysis demonstrates only the absence of lacustrine criteria, except for one charophyte‐bearing mudstone. Instead, the succession is characterized by less diagnostic floodplain fines with palaeosols, palustrine limestones with root voids and intercalated thin sandstone beds. Carbonate isotope signatures of the mottled marlstones, palustrine limestones and mud‐supported conglomerates substantiate the interpretation of a fluvial setting. Low, invariant δ18Ocarb reflects a short water residence time and highly variable δ13Ccarb indicates a variable degree of pedogenesis. Carbonate 87Sr/86Sr ratios of the entire succession show a unidirectional trend from 0.7103 to 0.7112, indicating a change of the solute provenance from Triassic to Jurassic rocks, identical to the provenance trend from extraclasts. The increase in carbonate along the succession is therefore independent from climate changes but reflects a base‐level rise from the level of the siliciclastic Upper Triassic to the carbonate‐bearing Lower to Middle Jurassic bedrocks. This study demonstrates that, when information on sedimentary architecture is limited, a combination of facies criteria (i.e. presence or absence of specific sedimentary structures and diagnostic organisms), component provenance, and stable and radiogenic isotopes is required to unequivocally distinguish between lacustrine and fluvial sediments, and to disentangle regional geological effects in the catchment and climate influences.</description><identifier>ISSN: 0037-0746</identifier><identifier>EISSN: 1365-3091</identifier><identifier>DOI: 10.1111/sed.12888</identifier><language>eng</language><publisher>Madrid: Wiley Subscription Services, Inc</publisher><subject>Base‐level ; Carbonates ; Catchment area ; Catchments ; Climate ; Climate change ; Climate effects ; Conglomerates ; Coring ; Criteria ; Diagnostic systems ; Ejecta ; Floodplains ; Fluvial deposits ; Fluvial sedimentation ; Fluvial sediments ; Georgensgmünd Formation ; Isotopes ; Jurassic ; Lake deposits ; Lakes ; Lithofacies ; Mesozoic ; Miocene ; Miocene Ries Crater ; Mudstone ; non‐marine carbonates ; Palaeozoic ; Paleozoic ; Pebbles ; Radiogenic materials ; Residence time ; Sandstone ; Sedimentary facies ; Sedimentary rocks ; Sedimentary structures ; Sediments ; Signatures ; Solutes ; stable carbon and oxygen isotopes ; Strontium 87 ; strontium isotopes ; Terrestrial environments ; Triassic ; Voids</subject><ispartof>Sedimentology, 2021-12, Vol.68 (7), p.2965-2995</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd on behalf of International Association of Sedimentologists</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3558-47b1a13692e2bb6391e3d602c0575ba72e868dfb068b9b1eada5c1f745590e3</citedby><cites>FETCH-LOGICAL-a3558-47b1a13692e2bb6391e3d602c0575ba72e868dfb068b9b1eada5c1f745590e3</cites><orcidid>0000-0003-2676-4415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><contributor>Arenas, Concha</contributor><creatorcontrib>Zeng, Lingqi</creatorcontrib><creatorcontrib>Ruge, Dag B.</creatorcontrib><creatorcontrib>Berger, Günther</creatorcontrib><creatorcontrib>Heck, Karin</creatorcontrib><creatorcontrib>Hölzl, Stefan</creatorcontrib><creatorcontrib>Reimer, Andreas</creatorcontrib><creatorcontrib>Jung, Dietmar</creatorcontrib><creatorcontrib>Arp, Gernot</creatorcontrib><creatorcontrib>Arenas, Concha</creatorcontrib><title>Sedimentological and carbonate isotope signatures to identify fluvial processes and catchment changes in a supposed impact ejecta‐dammed lake (Miocene, Germany)</title><title>Sedimentology</title><description>The identification and distinction of fluvial from lacustrine deposits and the recognition of catchment changes are crucial for the reconstruction of climate changes in terrestrial environments. The investigated drill core succession shows a general evolution from red–brown claystones to white–grey marlstones and microcrystalline limestones, which all have previously been considered as relict deposits of an impact ejecta‐dammed lake, falling within the mid‐Miocene Climate Transition. However, recent mammal biostratigraphic dating suggests a likely pre‐impact age. Indeed, no pebbles from impact ejecta have been detected; only local clasts of Mesozoic formations, in addition to rare Palaeozoic lydites from outside of the study area. Lithofacies analysis demonstrates only the absence of lacustrine criteria, except for one charophyte‐bearing mudstone. Instead, the succession is characterized by less diagnostic floodplain fines with palaeosols, palustrine limestones with root voids and intercalated thin sandstone beds. Carbonate isotope signatures of the mottled marlstones, palustrine limestones and mud‐supported conglomerates substantiate the interpretation of a fluvial setting. Low, invariant δ18Ocarb reflects a short water residence time and highly variable δ13Ccarb indicates a variable degree of pedogenesis. Carbonate 87Sr/86Sr ratios of the entire succession show a unidirectional trend from 0.7103 to 0.7112, indicating a change of the solute provenance from Triassic to Jurassic rocks, identical to the provenance trend from extraclasts. The increase in carbonate along the succession is therefore independent from climate changes but reflects a base‐level rise from the level of the siliciclastic Upper Triassic to the carbonate‐bearing Lower to Middle Jurassic bedrocks. This study demonstrates that, when information on sedimentary architecture is limited, a combination of facies criteria (i.e. presence or absence of specific sedimentary structures and diagnostic organisms), component provenance, and stable and radiogenic isotopes is required to unequivocally distinguish between lacustrine and fluvial sediments, and to disentangle regional geological effects in the catchment and climate influences.</description><subject>Base‐level</subject><subject>Carbonates</subject><subject>Catchment area</subject><subject>Catchments</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Conglomerates</subject><subject>Coring</subject><subject>Criteria</subject><subject>Diagnostic systems</subject><subject>Ejecta</subject><subject>Floodplains</subject><subject>Fluvial deposits</subject><subject>Fluvial sedimentation</subject><subject>Fluvial sediments</subject><subject>Georgensgmünd Formation</subject><subject>Isotopes</subject><subject>Jurassic</subject><subject>Lake deposits</subject><subject>Lakes</subject><subject>Lithofacies</subject><subject>Mesozoic</subject><subject>Miocene</subject><subject>Miocene Ries Crater</subject><subject>Mudstone</subject><subject>non‐marine carbonates</subject><subject>Palaeozoic</subject><subject>Paleozoic</subject><subject>Pebbles</subject><subject>Radiogenic materials</subject><subject>Residence time</subject><subject>Sandstone</subject><subject>Sedimentary facies</subject><subject>Sedimentary rocks</subject><subject>Sedimentary structures</subject><subject>Sediments</subject><subject>Signatures</subject><subject>Solutes</subject><subject>stable carbon and oxygen isotopes</subject><subject>Strontium 87</subject><subject>strontium isotopes</subject><subject>Terrestrial environments</subject><subject>Triassic</subject><subject>Voids</subject><issn>0037-0746</issn><issn>1365-3091</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kU1OwzAQhS0EEuVnwQ0ssQGJtHZSJ_ESlfIjgViUfTRxJsUliYOdgLLjCJyBo3ESXMIWb0ae-d6zn4aQE86m3J-Zw2LKwzRNd8iER7EIIib5LpkwFiUBS-bxPjlwbsMYj-epnJCvFRa6xqYzlVlrBRWFpqAKbG4a6JBqZzrTInV67e-9RUc7Q3XhFbocaFn1b9qLWmsUOueno7xTz1tTqp6hWfuubihQ17et8R-kum5BdRQ3qDr4_vgsoK59u4IXpGcP2ls1eEFv0NbQDOdHZK-EyuHxXz0kq-vl0-I2uH-8uVtc3gcQCZEG8yTn4CPLEMM8jyPJMSpiFiomEpFDEmIap0WZszjNZc4RChCKl8lcCMkwOiSno6uP8tqj67KN6W3jH8xCIUUso1BKT52PlLLGOYtl1lpdgx0yzrLtAjKfL_tdgGdnI_uuKxz-B7PV8mpU_AAye4uj</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Zeng, Lingqi</creator><creator>Ruge, Dag B.</creator><creator>Berger, Günther</creator><creator>Heck, Karin</creator><creator>Hölzl, Stefan</creator><creator>Reimer, Andreas</creator><creator>Jung, Dietmar</creator><creator>Arp, Gernot</creator><creator>Arenas, Concha</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2676-4415</orcidid></search><sort><creationdate>202112</creationdate><title>Sedimentological and carbonate isotope signatures to identify fluvial processes and catchment changes in a supposed impact ejecta‐dammed lake (Miocene, Germany)</title><author>Zeng, Lingqi ; Ruge, Dag B. ; Berger, Günther ; Heck, Karin ; Hölzl, Stefan ; Reimer, Andreas ; Jung, Dietmar ; Arp, Gernot ; Arenas, Concha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3558-47b1a13692e2bb6391e3d602c0575ba72e868dfb068b9b1eada5c1f745590e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Base‐level</topic><topic>Carbonates</topic><topic>Catchment area</topic><topic>Catchments</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Conglomerates</topic><topic>Coring</topic><topic>Criteria</topic><topic>Diagnostic systems</topic><topic>Ejecta</topic><topic>Floodplains</topic><topic>Fluvial deposits</topic><topic>Fluvial sedimentation</topic><topic>Fluvial sediments</topic><topic>Georgensgmünd Formation</topic><topic>Isotopes</topic><topic>Jurassic</topic><topic>Lake deposits</topic><topic>Lakes</topic><topic>Lithofacies</topic><topic>Mesozoic</topic><topic>Miocene</topic><topic>Miocene Ries Crater</topic><topic>Mudstone</topic><topic>non‐marine carbonates</topic><topic>Palaeozoic</topic><topic>Paleozoic</topic><topic>Pebbles</topic><topic>Radiogenic materials</topic><topic>Residence time</topic><topic>Sandstone</topic><topic>Sedimentary facies</topic><topic>Sedimentary rocks</topic><topic>Sedimentary structures</topic><topic>Sediments</topic><topic>Signatures</topic><topic>Solutes</topic><topic>stable carbon and oxygen isotopes</topic><topic>Strontium 87</topic><topic>strontium isotopes</topic><topic>Terrestrial environments</topic><topic>Triassic</topic><topic>Voids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Lingqi</creatorcontrib><creatorcontrib>Ruge, Dag B.</creatorcontrib><creatorcontrib>Berger, Günther</creatorcontrib><creatorcontrib>Heck, Karin</creatorcontrib><creatorcontrib>Hölzl, Stefan</creatorcontrib><creatorcontrib>Reimer, Andreas</creatorcontrib><creatorcontrib>Jung, Dietmar</creatorcontrib><creatorcontrib>Arp, Gernot</creatorcontrib><creatorcontrib>Arenas, Concha</creatorcontrib><collection>Wiley-Blackwell Open Access Titles(OpenAccess)</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Sedimentology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Lingqi</au><au>Ruge, Dag B.</au><au>Berger, Günther</au><au>Heck, Karin</au><au>Hölzl, Stefan</au><au>Reimer, Andreas</au><au>Jung, Dietmar</au><au>Arp, Gernot</au><au>Arenas, Concha</au><au>Arenas, Concha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sedimentological and carbonate isotope signatures to identify fluvial processes and catchment changes in a supposed impact ejecta‐dammed lake (Miocene, Germany)</atitle><jtitle>Sedimentology</jtitle><date>2021-12</date><risdate>2021</risdate><volume>68</volume><issue>7</issue><spage>2965</spage><epage>2995</epage><pages>2965-2995</pages><issn>0037-0746</issn><eissn>1365-3091</eissn><abstract>The identification and distinction of fluvial from lacustrine deposits and the recognition of catchment changes are crucial for the reconstruction of climate changes in terrestrial environments. The investigated drill core succession shows a general evolution from red–brown claystones to white–grey marlstones and microcrystalline limestones, which all have previously been considered as relict deposits of an impact ejecta‐dammed lake, falling within the mid‐Miocene Climate Transition. However, recent mammal biostratigraphic dating suggests a likely pre‐impact age. Indeed, no pebbles from impact ejecta have been detected; only local clasts of Mesozoic formations, in addition to rare Palaeozoic lydites from outside of the study area. Lithofacies analysis demonstrates only the absence of lacustrine criteria, except for one charophyte‐bearing mudstone. Instead, the succession is characterized by less diagnostic floodplain fines with palaeosols, palustrine limestones with root voids and intercalated thin sandstone beds. Carbonate isotope signatures of the mottled marlstones, palustrine limestones and mud‐supported conglomerates substantiate the interpretation of a fluvial setting. Low, invariant δ18Ocarb reflects a short water residence time and highly variable δ13Ccarb indicates a variable degree of pedogenesis. Carbonate 87Sr/86Sr ratios of the entire succession show a unidirectional trend from 0.7103 to 0.7112, indicating a change of the solute provenance from Triassic to Jurassic rocks, identical to the provenance trend from extraclasts. The increase in carbonate along the succession is therefore independent from climate changes but reflects a base‐level rise from the level of the siliciclastic Upper Triassic to the carbonate‐bearing Lower to Middle Jurassic bedrocks. This study demonstrates that, when information on sedimentary architecture is limited, a combination of facies criteria (i.e. presence or absence of specific sedimentary structures and diagnostic organisms), component provenance, and stable and radiogenic isotopes is required to unequivocally distinguish between lacustrine and fluvial sediments, and to disentangle regional geological effects in the catchment and climate influences.</abstract><cop>Madrid</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/sed.12888</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0003-2676-4415</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-0746 |
ispartof | Sedimentology, 2021-12, Vol.68 (7), p.2965-2995 |
issn | 0037-0746 1365-3091 |
language | eng |
recordid | cdi_proquest_journals_2595693299 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Base‐level Carbonates Catchment area Catchments Climate Climate change Climate effects Conglomerates Coring Criteria Diagnostic systems Ejecta Floodplains Fluvial deposits Fluvial sedimentation Fluvial sediments Georgensgmünd Formation Isotopes Jurassic Lake deposits Lakes Lithofacies Mesozoic Miocene Miocene Ries Crater Mudstone non‐marine carbonates Palaeozoic Paleozoic Pebbles Radiogenic materials Residence time Sandstone Sedimentary facies Sedimentary rocks Sedimentary structures Sediments Signatures Solutes stable carbon and oxygen isotopes Strontium 87 strontium isotopes Terrestrial environments Triassic Voids |
title | Sedimentological and carbonate isotope signatures to identify fluvial processes and catchment changes in a supposed impact ejecta‐dammed lake (Miocene, Germany) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sedimentological%20and%20carbonate%20isotope%20signatures%20to%20identify%20fluvial%20processes%20and%20catchment%20changes%20in%20a%20supposed%20impact%20ejecta%E2%80%90dammed%20lake%20(Miocene,%20Germany)&rft.jtitle=Sedimentology&rft.au=Zeng,%20Lingqi&rft.date=2021-12&rft.volume=68&rft.issue=7&rft.spage=2965&rft.epage=2995&rft.pages=2965-2995&rft.issn=0037-0746&rft.eissn=1365-3091&rft_id=info:doi/10.1111/sed.12888&rft_dat=%3Cproquest_cross%3E2595693299%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a3558-47b1a13692e2bb6391e3d602c0575ba72e868dfb068b9b1eada5c1f745590e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2595693299&rft_id=info:pmid/&rfr_iscdi=true |