Loading…

Advanced Decoupling Techniques for Grid-Connected Inverters With Multiple Inputs

The parallel connection of multiple distributed energy resources with a common DC-link structure is typically used in grid-connected applications which enables flexible operation maximizing power production of the inverter system under various operation conditions. However, it has brought drawbacks...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.148409-148420
Main Authors: Song, Guanhong, Cao, Bo, Chang, Liuchen, Shao, Riming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c358t-b4921932e4852e8fd4198bcc1f6df2c58d6dedffe3a8d297847676af454190703
container_end_page 148420
container_issue
container_start_page 148409
container_title IEEE access
container_volume 9
creator Song, Guanhong
Cao, Bo
Chang, Liuchen
Shao, Riming
description The parallel connection of multiple distributed energy resources with a common DC-link structure is typically used in grid-connected applications which enables flexible operation maximizing power production of the inverter system under various operation conditions. However, it has brought drawbacks for DC-link power decoupling with the requirement of a larger capacitor bank, faster voltage regulation, etc., to maintain a constant DC-link voltage which increases the overall size and cost. In this paper, a DC-link decoupling technique using a nonlinear control algorithm is proposed to perform rapid DC-link voltage regulation for multi-input grid-connected inverters. With the implementation of a nonlinear observer, the power fed into the DC-link from multiple inputs is estimated by the proposed control algorithm and can be rapidly compensated by the inverter minimizing the DC-link voltage fluctuation. The effectiveness of the proposed nonlinear power decoupling control algorithm is verified by comparing the DC-link performance with a conventional control algorithm through both simulation results on a MATLAB platform and experimental verification on a grid-connected inverter prototype.
doi_str_mv 10.1109/ACCESS.2021.3124614
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2595722196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9597512</ieee_id><doaj_id>oai_doaj_org_article_bca97c1e458345feb22213ca41426148</doaj_id><sourcerecordid>2595722196</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-b4921932e4852e8fd4198bcc1f6df2c58d6dedffe3a8d297847676af454190703</originalsourceid><addsrcrecordid>eNpNkV1LwzAYhYsoOOZ-gTcFrzubrza5HHXqQFHYxMuQJW80ozY1bQf-ezM7hrlJODznJHlPklyjfI5QLm4XVbVcr-c4x2hOEKYFomfJBKNCZISR4vzf-TKZdd0uj4tHiZWT5HVh9qrRYNI70H5oa9d8pBvQn437HqBLrQ_pQ3Amq3zTgO4juGr2EHoIXfru-s_0eah719YQ9Xbou6vkwqq6g9lxnyZv98tN9Zg9vTysqsVTpgnjfbalAiNBMFDOMHBrKBJ8qzWyhbFYM24KA8ZaIIobLEpOy6IslKUsgnmZk2myGnONVzvZBvelwo_0ysk_wYcPqULvdA1yq5UoNQLKOKHMwhZjjIhWFFEch8Vj1s2Y1QZ_-HUvd34ITXy-xCyOKeKiiBQZKR181wWwp1tRLg9NyLEJeWhCHpuIruvR5QDg5BBMlAxh8gs2-INy</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595722196</pqid></control><display><type>article</type><title>Advanced Decoupling Techniques for Grid-Connected Inverters With Multiple Inputs</title><source>IEEE Xplore Open Access Journals</source><creator>Song, Guanhong ; Cao, Bo ; Chang, Liuchen ; Shao, Riming</creator><creatorcontrib>Song, Guanhong ; Cao, Bo ; Chang, Liuchen ; Shao, Riming</creatorcontrib><description>The parallel connection of multiple distributed energy resources with a common DC-link structure is typically used in grid-connected applications which enables flexible operation maximizing power production of the inverter system under various operation conditions. However, it has brought drawbacks for DC-link power decoupling with the requirement of a larger capacitor bank, faster voltage regulation, etc., to maintain a constant DC-link voltage which increases the overall size and cost. In this paper, a DC-link decoupling technique using a nonlinear control algorithm is proposed to perform rapid DC-link voltage regulation for multi-input grid-connected inverters. With the implementation of a nonlinear observer, the power fed into the DC-link from multiple inputs is estimated by the proposed control algorithm and can be rapidly compensated by the inverter minimizing the DC-link voltage fluctuation. The effectiveness of the proposed nonlinear power decoupling control algorithm is verified by comparing the DC-link performance with a conventional control algorithm through both simulation results on a MATLAB platform and experimental verification on a grid-connected inverter prototype.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3124614</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Capacitor banks ; Capacitors ; Control algorithms ; Control theory ; DC-AC power converters ; Decoupling method ; Distributed generation ; Electric potential ; Energy sources ; Estimation ; feedforward systems ; Fluctuations ; Inverters ; Nonlinear control ; nonlinear control systems ; Observers ; Transient analysis ; Voltage ; Voltage control</subject><ispartof>IEEE access, 2021, Vol.9, p.148409-148420</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-b4921932e4852e8fd4198bcc1f6df2c58d6dedffe3a8d297847676af454190703</cites><orcidid>0000-0002-9927-1219 ; 0000-0002-2552-1051 ; 0000-0002-6803-3891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9597512$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27612,27902,27903,27904,54912</link.rule.ids></links><search><creatorcontrib>Song, Guanhong</creatorcontrib><creatorcontrib>Cao, Bo</creatorcontrib><creatorcontrib>Chang, Liuchen</creatorcontrib><creatorcontrib>Shao, Riming</creatorcontrib><title>Advanced Decoupling Techniques for Grid-Connected Inverters With Multiple Inputs</title><title>IEEE access</title><addtitle>Access</addtitle><description>The parallel connection of multiple distributed energy resources with a common DC-link structure is typically used in grid-connected applications which enables flexible operation maximizing power production of the inverter system under various operation conditions. However, it has brought drawbacks for DC-link power decoupling with the requirement of a larger capacitor bank, faster voltage regulation, etc., to maintain a constant DC-link voltage which increases the overall size and cost. In this paper, a DC-link decoupling technique using a nonlinear control algorithm is proposed to perform rapid DC-link voltage regulation for multi-input grid-connected inverters. With the implementation of a nonlinear observer, the power fed into the DC-link from multiple inputs is estimated by the proposed control algorithm and can be rapidly compensated by the inverter minimizing the DC-link voltage fluctuation. The effectiveness of the proposed nonlinear power decoupling control algorithm is verified by comparing the DC-link performance with a conventional control algorithm through both simulation results on a MATLAB platform and experimental verification on a grid-connected inverter prototype.</description><subject>Algorithms</subject><subject>Capacitor banks</subject><subject>Capacitors</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>DC-AC power converters</subject><subject>Decoupling method</subject><subject>Distributed generation</subject><subject>Electric potential</subject><subject>Energy sources</subject><subject>Estimation</subject><subject>feedforward systems</subject><subject>Fluctuations</subject><subject>Inverters</subject><subject>Nonlinear control</subject><subject>nonlinear control systems</subject><subject>Observers</subject><subject>Transient analysis</subject><subject>Voltage</subject><subject>Voltage control</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkV1LwzAYhYsoOOZ-gTcFrzubrza5HHXqQFHYxMuQJW80ozY1bQf-ezM7hrlJODznJHlPklyjfI5QLm4XVbVcr-c4x2hOEKYFomfJBKNCZISR4vzf-TKZdd0uj4tHiZWT5HVh9qrRYNI70H5oa9d8pBvQn437HqBLrQ_pQ3Amq3zTgO4juGr2EHoIXfru-s_0eah719YQ9Xbou6vkwqq6g9lxnyZv98tN9Zg9vTysqsVTpgnjfbalAiNBMFDOMHBrKBJ8qzWyhbFYM24KA8ZaIIobLEpOy6IslKUsgnmZk2myGnONVzvZBvelwo_0ysk_wYcPqULvdA1yq5UoNQLKOKHMwhZjjIhWFFEch8Vj1s2Y1QZ_-HUvd34ITXy-xCyOKeKiiBQZKR181wWwp1tRLg9NyLEJeWhCHpuIruvR5QDg5BBMlAxh8gs2-INy</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Song, Guanhong</creator><creator>Cao, Bo</creator><creator>Chang, Liuchen</creator><creator>Shao, Riming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9927-1219</orcidid><orcidid>https://orcid.org/0000-0002-2552-1051</orcidid><orcidid>https://orcid.org/0000-0002-6803-3891</orcidid></search><sort><creationdate>2021</creationdate><title>Advanced Decoupling Techniques for Grid-Connected Inverters With Multiple Inputs</title><author>Song, Guanhong ; Cao, Bo ; Chang, Liuchen ; Shao, Riming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-b4921932e4852e8fd4198bcc1f6df2c58d6dedffe3a8d297847676af454190703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Capacitor banks</topic><topic>Capacitors</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>DC-AC power converters</topic><topic>Decoupling method</topic><topic>Distributed generation</topic><topic>Electric potential</topic><topic>Energy sources</topic><topic>Estimation</topic><topic>feedforward systems</topic><topic>Fluctuations</topic><topic>Inverters</topic><topic>Nonlinear control</topic><topic>nonlinear control systems</topic><topic>Observers</topic><topic>Transient analysis</topic><topic>Voltage</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Guanhong</creatorcontrib><creatorcontrib>Cao, Bo</creatorcontrib><creatorcontrib>Chang, Liuchen</creatorcontrib><creatorcontrib>Shao, Riming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Guanhong</au><au>Cao, Bo</au><au>Chang, Liuchen</au><au>Shao, Riming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advanced Decoupling Techniques for Grid-Connected Inverters With Multiple Inputs</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>148409</spage><epage>148420</epage><pages>148409-148420</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The parallel connection of multiple distributed energy resources with a common DC-link structure is typically used in grid-connected applications which enables flexible operation maximizing power production of the inverter system under various operation conditions. However, it has brought drawbacks for DC-link power decoupling with the requirement of a larger capacitor bank, faster voltage regulation, etc., to maintain a constant DC-link voltage which increases the overall size and cost. In this paper, a DC-link decoupling technique using a nonlinear control algorithm is proposed to perform rapid DC-link voltage regulation for multi-input grid-connected inverters. With the implementation of a nonlinear observer, the power fed into the DC-link from multiple inputs is estimated by the proposed control algorithm and can be rapidly compensated by the inverter minimizing the DC-link voltage fluctuation. The effectiveness of the proposed nonlinear power decoupling control algorithm is verified by comparing the DC-link performance with a conventional control algorithm through both simulation results on a MATLAB platform and experimental verification on a grid-connected inverter prototype.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3124614</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9927-1219</orcidid><orcidid>https://orcid.org/0000-0002-2552-1051</orcidid><orcidid>https://orcid.org/0000-0002-6803-3891</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.148409-148420
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2595722196
source IEEE Xplore Open Access Journals
subjects Algorithms
Capacitor banks
Capacitors
Control algorithms
Control theory
DC-AC power converters
Decoupling method
Distributed generation
Electric potential
Energy sources
Estimation
feedforward systems
Fluctuations
Inverters
Nonlinear control
nonlinear control systems
Observers
Transient analysis
Voltage
Voltage control
title Advanced Decoupling Techniques for Grid-Connected Inverters With Multiple Inputs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A19%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advanced%20Decoupling%20Techniques%20for%20Grid-Connected%20Inverters%20With%20Multiple%20Inputs&rft.jtitle=IEEE%20access&rft.au=Song,%20Guanhong&rft.date=2021&rft.volume=9&rft.spage=148409&rft.epage=148420&rft.pages=148409-148420&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3124614&rft_dat=%3Cproquest_doaj_%3E2595722196%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-b4921932e4852e8fd4198bcc1f6df2c58d6dedffe3a8d297847676af454190703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2595722196&rft_id=info:pmid/&rft_ieee_id=9597512&rfr_iscdi=true