Loading…

Robust sequential search

We study sequential search without priors. Our interest lies in decision rules that are close to being optimal under each prior and after each history. We call these rules robust. The search literature employs optimal rules based on cutoff strategies, and these rules are not robust. We derive robust...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical economics 2021-11, Vol.16 (4), p.1431-1470
Main Authors: Schlag, Karl H, Zapechelnyuk, Andriy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study sequential search without priors. Our interest lies in decision rules that are close to being optimal under each prior and after each history. We call these rules robust. The search literature employs optimal rules based on cutoff strategies, and these rules are not robust. We derive robust rules and show that their performance exceeds 1/2 of the optimum against binary independent and identically distributed (i.i.d.) environments and 1/4 of the optimum against all i.i.d. environments. This performance improves substantially with the outside option value; for instance, it exceeds 2/3 of the optimum if the outside option exceeds 1/6 of the highest possible alternative.
ISSN:1555-7561
1933-6837
1555-7561
DOI:10.3982/TE3994