Loading…
Piecewise Parabolic Approximate Computation Based on an Error-Flattened Segmenter and a Novel Quantizer
This paper proposes a novel Piecewise Parabolic Approximate Computation method for hardware function evaluation, which mainly incorporates an error-flattened segmenter and an implementation quantizer. Under a required software maximum absolute error (MAE), the segmenter adaptively selects a minimum...
Saved in:
Published in: | Electronics (Basel) 2021-11, Vol.10 (21), p.2704 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-d213e3551faa72367a3799a9650cf804014b87aa74e7a7da713b1b83be4a9cbf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-d213e3551faa72367a3799a9650cf804014b87aa74e7a7da713b1b83be4a9cbf3 |
container_end_page | |
container_issue | 21 |
container_start_page | 2704 |
container_title | Electronics (Basel) |
container_volume | 10 |
creator | An, Mengyu Luo, Yuanyong Zheng, Muhan Wang, Yuxuan Dong, Hongxi Wang, Zhongfeng Peng, Chenglei Pan, Hongbing |
description | This paper proposes a novel Piecewise Parabolic Approximate Computation method for hardware function evaluation, which mainly incorporates an error-flattened segmenter and an implementation quantizer. Under a required software maximum absolute error (MAE), the segmenter adaptively selects a minimum number of parabolas to approximate the objective function. By completely imitating the circuit’s behavior before actual implementation, the quantizer calculates the minimum quantization bit width to ensure a non-redundant fixed-point hardware architecture with an MAE of 1 unit of least precision (ulp), eliminating the iterative design time for the circuits. The method causes the number of segments to reach the theoretical limit, and has great advantages in the number of segments and the size of the look-up table (LUT). To prove the superiority of the proposed method, six common functions were implemented by the proposed method under TSMC-90 nm technology. Compared to the state-of-the-art piecewise quadratic approximation methods, the proposed method has advantages in the area with roughly the same delay. Furthermore, a unified function-evaluation unit was also implemented under TSMC-90 nm technology. |
doi_str_mv | 10.3390/electronics10212704 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596010972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596010972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-d213e3551faa72367a3799a9650cf804014b87aa74e7a7da713b1b83be4a9cbf3</originalsourceid><addsrcrecordid>eNptUMtOwzAQtBBIVKVfwMUS54AfSRwfS9UCUgVFwDnaOJsqVRoH2-H19RiVAwf2sqOd1YxmCDnn7FJKza6wQxOc7VvjORNcKJYekYlgSidaaHH8B5-Smfc7FkdzWUg2IdtNiwbfW490Aw4q27WGzofB2Y92DwHpwu6HMUBobU-vwWNNI4CeLp2zLll1EAL28fqE2z32AV0kawr03r5hRx9H6EP7he6MnDTQeZz97il5WS2fF7fJ-uHmbjFfJ0YKEZJacIkyy3gDoITMFUilNeg8Y6YpWMp4WhUqcikqUDUoLiteFbLCFLSpGjklFwfdmOB1RB_KnR1dHy1Lkemccaaj7pTIw5dx1nuHTTm4GNd9lpyVP6WW_5QqvwH4y24n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596010972</pqid></control><display><type>article</type><title>Piecewise Parabolic Approximate Computation Based on an Error-Flattened Segmenter and a Novel Quantizer</title><source>Publicly Available Content Database</source><creator>An, Mengyu ; Luo, Yuanyong ; Zheng, Muhan ; Wang, Yuxuan ; Dong, Hongxi ; Wang, Zhongfeng ; Peng, Chenglei ; Pan, Hongbing</creator><creatorcontrib>An, Mengyu ; Luo, Yuanyong ; Zheng, Muhan ; Wang, Yuxuan ; Dong, Hongxi ; Wang, Zhongfeng ; Peng, Chenglei ; Pan, Hongbing</creatorcontrib><description>This paper proposes a novel Piecewise Parabolic Approximate Computation method for hardware function evaluation, which mainly incorporates an error-flattened segmenter and an implementation quantizer. Under a required software maximum absolute error (MAE), the segmenter adaptively selects a minimum number of parabolas to approximate the objective function. By completely imitating the circuit’s behavior before actual implementation, the quantizer calculates the minimum quantization bit width to ensure a non-redundant fixed-point hardware architecture with an MAE of 1 unit of least precision (ulp), eliminating the iterative design time for the circuits. The method causes the number of segments to reach the theoretical limit, and has great advantages in the number of segments and the size of the look-up table (LUT). To prove the superiority of the proposed method, six common functions were implemented by the proposed method under TSMC-90 nm technology. Compared to the state-of-the-art piecewise quadratic approximation methods, the proposed method has advantages in the area with roughly the same delay. Furthermore, a unified function-evaluation unit was also implemented under TSMC-90 nm technology.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10212704</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Approximation ; Circuit design ; Computation ; Design ; Errors ; Fixed points (mathematics) ; Hardware ; Iterative methods ; Linear programming ; Lookup tables ; Mathematical analysis ; Methods ; Parabolas ; Segments ; Software</subject><ispartof>Electronics (Basel), 2021-11, Vol.10 (21), p.2704</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-d213e3551faa72367a3799a9650cf804014b87aa74e7a7da713b1b83be4a9cbf3</citedby><cites>FETCH-LOGICAL-c322t-d213e3551faa72367a3799a9650cf804014b87aa74e7a7da713b1b83be4a9cbf3</cites><orcidid>0000-0002-4450-066X ; 0000-0001-9981-0588 ; 0000-0002-1527-3672 ; 0000-0003-2030-2877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2596010972/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2596010972?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>An, Mengyu</creatorcontrib><creatorcontrib>Luo, Yuanyong</creatorcontrib><creatorcontrib>Zheng, Muhan</creatorcontrib><creatorcontrib>Wang, Yuxuan</creatorcontrib><creatorcontrib>Dong, Hongxi</creatorcontrib><creatorcontrib>Wang, Zhongfeng</creatorcontrib><creatorcontrib>Peng, Chenglei</creatorcontrib><creatorcontrib>Pan, Hongbing</creatorcontrib><title>Piecewise Parabolic Approximate Computation Based on an Error-Flattened Segmenter and a Novel Quantizer</title><title>Electronics (Basel)</title><description>This paper proposes a novel Piecewise Parabolic Approximate Computation method for hardware function evaluation, which mainly incorporates an error-flattened segmenter and an implementation quantizer. Under a required software maximum absolute error (MAE), the segmenter adaptively selects a minimum number of parabolas to approximate the objective function. By completely imitating the circuit’s behavior before actual implementation, the quantizer calculates the minimum quantization bit width to ensure a non-redundant fixed-point hardware architecture with an MAE of 1 unit of least precision (ulp), eliminating the iterative design time for the circuits. The method causes the number of segments to reach the theoretical limit, and has great advantages in the number of segments and the size of the look-up table (LUT). To prove the superiority of the proposed method, six common functions were implemented by the proposed method under TSMC-90 nm technology. Compared to the state-of-the-art piecewise quadratic approximation methods, the proposed method has advantages in the area with roughly the same delay. Furthermore, a unified function-evaluation unit was also implemented under TSMC-90 nm technology.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Circuit design</subject><subject>Computation</subject><subject>Design</subject><subject>Errors</subject><subject>Fixed points (mathematics)</subject><subject>Hardware</subject><subject>Iterative methods</subject><subject>Linear programming</subject><subject>Lookup tables</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Parabolas</subject><subject>Segments</subject><subject>Software</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUMtOwzAQtBBIVKVfwMUS54AfSRwfS9UCUgVFwDnaOJsqVRoH2-H19RiVAwf2sqOd1YxmCDnn7FJKza6wQxOc7VvjORNcKJYekYlgSidaaHH8B5-Smfc7FkdzWUg2IdtNiwbfW490Aw4q27WGzofB2Y92DwHpwu6HMUBobU-vwWNNI4CeLp2zLll1EAL28fqE2z32AV0kawr03r5hRx9H6EP7he6MnDTQeZz97il5WS2fF7fJ-uHmbjFfJ0YKEZJacIkyy3gDoITMFUilNeg8Y6YpWMp4WhUqcikqUDUoLiteFbLCFLSpGjklFwfdmOB1RB_KnR1dHy1Lkemccaaj7pTIw5dx1nuHTTm4GNd9lpyVP6WW_5QqvwH4y24n</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>An, Mengyu</creator><creator>Luo, Yuanyong</creator><creator>Zheng, Muhan</creator><creator>Wang, Yuxuan</creator><creator>Dong, Hongxi</creator><creator>Wang, Zhongfeng</creator><creator>Peng, Chenglei</creator><creator>Pan, Hongbing</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4450-066X</orcidid><orcidid>https://orcid.org/0000-0001-9981-0588</orcidid><orcidid>https://orcid.org/0000-0002-1527-3672</orcidid><orcidid>https://orcid.org/0000-0003-2030-2877</orcidid></search><sort><creationdate>20211101</creationdate><title>Piecewise Parabolic Approximate Computation Based on an Error-Flattened Segmenter and a Novel Quantizer</title><author>An, Mengyu ; Luo, Yuanyong ; Zheng, Muhan ; Wang, Yuxuan ; Dong, Hongxi ; Wang, Zhongfeng ; Peng, Chenglei ; Pan, Hongbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-d213e3551faa72367a3799a9650cf804014b87aa74e7a7da713b1b83be4a9cbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Circuit design</topic><topic>Computation</topic><topic>Design</topic><topic>Errors</topic><topic>Fixed points (mathematics)</topic><topic>Hardware</topic><topic>Iterative methods</topic><topic>Linear programming</topic><topic>Lookup tables</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Parabolas</topic><topic>Segments</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Mengyu</creatorcontrib><creatorcontrib>Luo, Yuanyong</creatorcontrib><creatorcontrib>Zheng, Muhan</creatorcontrib><creatorcontrib>Wang, Yuxuan</creatorcontrib><creatorcontrib>Dong, Hongxi</creatorcontrib><creatorcontrib>Wang, Zhongfeng</creatorcontrib><creatorcontrib>Peng, Chenglei</creatorcontrib><creatorcontrib>Pan, Hongbing</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Mengyu</au><au>Luo, Yuanyong</au><au>Zheng, Muhan</au><au>Wang, Yuxuan</au><au>Dong, Hongxi</au><au>Wang, Zhongfeng</au><au>Peng, Chenglei</au><au>Pan, Hongbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piecewise Parabolic Approximate Computation Based on an Error-Flattened Segmenter and a Novel Quantizer</atitle><jtitle>Electronics (Basel)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>10</volume><issue>21</issue><spage>2704</spage><pages>2704-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This paper proposes a novel Piecewise Parabolic Approximate Computation method for hardware function evaluation, which mainly incorporates an error-flattened segmenter and an implementation quantizer. Under a required software maximum absolute error (MAE), the segmenter adaptively selects a minimum number of parabolas to approximate the objective function. By completely imitating the circuit’s behavior before actual implementation, the quantizer calculates the minimum quantization bit width to ensure a non-redundant fixed-point hardware architecture with an MAE of 1 unit of least precision (ulp), eliminating the iterative design time for the circuits. The method causes the number of segments to reach the theoretical limit, and has great advantages in the number of segments and the size of the look-up table (LUT). To prove the superiority of the proposed method, six common functions were implemented by the proposed method under TSMC-90 nm technology. Compared to the state-of-the-art piecewise quadratic approximation methods, the proposed method has advantages in the area with roughly the same delay. Furthermore, a unified function-evaluation unit was also implemented under TSMC-90 nm technology.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics10212704</doi><orcidid>https://orcid.org/0000-0002-4450-066X</orcidid><orcidid>https://orcid.org/0000-0001-9981-0588</orcidid><orcidid>https://orcid.org/0000-0002-1527-3672</orcidid><orcidid>https://orcid.org/0000-0003-2030-2877</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2021-11, Vol.10 (21), p.2704 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2596010972 |
source | Publicly Available Content Database |
subjects | Accuracy Approximation Circuit design Computation Design Errors Fixed points (mathematics) Hardware Iterative methods Linear programming Lookup tables Mathematical analysis Methods Parabolas Segments Software |
title | Piecewise Parabolic Approximate Computation Based on an Error-Flattened Segmenter and a Novel Quantizer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A43%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piecewise%20Parabolic%20Approximate%20Computation%20Based%20on%20an%20Error-Flattened%20Segmenter%20and%20a%20Novel%20Quantizer&rft.jtitle=Electronics%20(Basel)&rft.au=An,%20Mengyu&rft.date=2021-11-01&rft.volume=10&rft.issue=21&rft.spage=2704&rft.pages=2704-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10212704&rft_dat=%3Cproquest_cross%3E2596010972%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-d213e3551faa72367a3799a9650cf804014b87aa74e7a7da713b1b83be4a9cbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2596010972&rft_id=info:pmid/&rfr_iscdi=true |