Loading…

Piecewise Parabolic Approximate Computation Based on an Error-Flattened Segmenter and a Novel Quantizer

This paper proposes a novel Piecewise Parabolic Approximate Computation method for hardware function evaluation, which mainly incorporates an error-flattened segmenter and an implementation quantizer. Under a required software maximum absolute error (MAE), the segmenter adaptively selects a minimum...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2021-11, Vol.10 (21), p.2704
Main Authors: An, Mengyu, Luo, Yuanyong, Zheng, Muhan, Wang, Yuxuan, Dong, Hongxi, Wang, Zhongfeng, Peng, Chenglei, Pan, Hongbing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-d213e3551faa72367a3799a9650cf804014b87aa74e7a7da713b1b83be4a9cbf3
cites cdi_FETCH-LOGICAL-c322t-d213e3551faa72367a3799a9650cf804014b87aa74e7a7da713b1b83be4a9cbf3
container_end_page
container_issue 21
container_start_page 2704
container_title Electronics (Basel)
container_volume 10
creator An, Mengyu
Luo, Yuanyong
Zheng, Muhan
Wang, Yuxuan
Dong, Hongxi
Wang, Zhongfeng
Peng, Chenglei
Pan, Hongbing
description This paper proposes a novel Piecewise Parabolic Approximate Computation method for hardware function evaluation, which mainly incorporates an error-flattened segmenter and an implementation quantizer. Under a required software maximum absolute error (MAE), the segmenter adaptively selects a minimum number of parabolas to approximate the objective function. By completely imitating the circuit’s behavior before actual implementation, the quantizer calculates the minimum quantization bit width to ensure a non-redundant fixed-point hardware architecture with an MAE of 1 unit of least precision (ulp), eliminating the iterative design time for the circuits. The method causes the number of segments to reach the theoretical limit, and has great advantages in the number of segments and the size of the look-up table (LUT). To prove the superiority of the proposed method, six common functions were implemented by the proposed method under TSMC-90 nm technology. Compared to the state-of-the-art piecewise quadratic approximation methods, the proposed method has advantages in the area with roughly the same delay. Furthermore, a unified function-evaluation unit was also implemented under TSMC-90 nm technology.
doi_str_mv 10.3390/electronics10212704
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596010972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596010972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-d213e3551faa72367a3799a9650cf804014b87aa74e7a7da713b1b83be4a9cbf3</originalsourceid><addsrcrecordid>eNptUMtOwzAQtBBIVKVfwMUS54AfSRwfS9UCUgVFwDnaOJsqVRoH2-H19RiVAwf2sqOd1YxmCDnn7FJKza6wQxOc7VvjORNcKJYekYlgSidaaHH8B5-Smfc7FkdzWUg2IdtNiwbfW490Aw4q27WGzofB2Y92DwHpwu6HMUBobU-vwWNNI4CeLp2zLll1EAL28fqE2z32AV0kawr03r5hRx9H6EP7he6MnDTQeZz97il5WS2fF7fJ-uHmbjFfJ0YKEZJacIkyy3gDoITMFUilNeg8Y6YpWMp4WhUqcikqUDUoLiteFbLCFLSpGjklFwfdmOB1RB_KnR1dHy1Lkemccaaj7pTIw5dx1nuHTTm4GNd9lpyVP6WW_5QqvwH4y24n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596010972</pqid></control><display><type>article</type><title>Piecewise Parabolic Approximate Computation Based on an Error-Flattened Segmenter and a Novel Quantizer</title><source>Publicly Available Content Database</source><creator>An, Mengyu ; Luo, Yuanyong ; Zheng, Muhan ; Wang, Yuxuan ; Dong, Hongxi ; Wang, Zhongfeng ; Peng, Chenglei ; Pan, Hongbing</creator><creatorcontrib>An, Mengyu ; Luo, Yuanyong ; Zheng, Muhan ; Wang, Yuxuan ; Dong, Hongxi ; Wang, Zhongfeng ; Peng, Chenglei ; Pan, Hongbing</creatorcontrib><description>This paper proposes a novel Piecewise Parabolic Approximate Computation method for hardware function evaluation, which mainly incorporates an error-flattened segmenter and an implementation quantizer. Under a required software maximum absolute error (MAE), the segmenter adaptively selects a minimum number of parabolas to approximate the objective function. By completely imitating the circuit’s behavior before actual implementation, the quantizer calculates the minimum quantization bit width to ensure a non-redundant fixed-point hardware architecture with an MAE of 1 unit of least precision (ulp), eliminating the iterative design time for the circuits. The method causes the number of segments to reach the theoretical limit, and has great advantages in the number of segments and the size of the look-up table (LUT). To prove the superiority of the proposed method, six common functions were implemented by the proposed method under TSMC-90 nm technology. Compared to the state-of-the-art piecewise quadratic approximation methods, the proposed method has advantages in the area with roughly the same delay. Furthermore, a unified function-evaluation unit was also implemented under TSMC-90 nm technology.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10212704</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Approximation ; Circuit design ; Computation ; Design ; Errors ; Fixed points (mathematics) ; Hardware ; Iterative methods ; Linear programming ; Lookup tables ; Mathematical analysis ; Methods ; Parabolas ; Segments ; Software</subject><ispartof>Electronics (Basel), 2021-11, Vol.10 (21), p.2704</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-d213e3551faa72367a3799a9650cf804014b87aa74e7a7da713b1b83be4a9cbf3</citedby><cites>FETCH-LOGICAL-c322t-d213e3551faa72367a3799a9650cf804014b87aa74e7a7da713b1b83be4a9cbf3</cites><orcidid>0000-0002-4450-066X ; 0000-0001-9981-0588 ; 0000-0002-1527-3672 ; 0000-0003-2030-2877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2596010972/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2596010972?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>An, Mengyu</creatorcontrib><creatorcontrib>Luo, Yuanyong</creatorcontrib><creatorcontrib>Zheng, Muhan</creatorcontrib><creatorcontrib>Wang, Yuxuan</creatorcontrib><creatorcontrib>Dong, Hongxi</creatorcontrib><creatorcontrib>Wang, Zhongfeng</creatorcontrib><creatorcontrib>Peng, Chenglei</creatorcontrib><creatorcontrib>Pan, Hongbing</creatorcontrib><title>Piecewise Parabolic Approximate Computation Based on an Error-Flattened Segmenter and a Novel Quantizer</title><title>Electronics (Basel)</title><description>This paper proposes a novel Piecewise Parabolic Approximate Computation method for hardware function evaluation, which mainly incorporates an error-flattened segmenter and an implementation quantizer. Under a required software maximum absolute error (MAE), the segmenter adaptively selects a minimum number of parabolas to approximate the objective function. By completely imitating the circuit’s behavior before actual implementation, the quantizer calculates the minimum quantization bit width to ensure a non-redundant fixed-point hardware architecture with an MAE of 1 unit of least precision (ulp), eliminating the iterative design time for the circuits. The method causes the number of segments to reach the theoretical limit, and has great advantages in the number of segments and the size of the look-up table (LUT). To prove the superiority of the proposed method, six common functions were implemented by the proposed method under TSMC-90 nm technology. Compared to the state-of-the-art piecewise quadratic approximation methods, the proposed method has advantages in the area with roughly the same delay. Furthermore, a unified function-evaluation unit was also implemented under TSMC-90 nm technology.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Circuit design</subject><subject>Computation</subject><subject>Design</subject><subject>Errors</subject><subject>Fixed points (mathematics)</subject><subject>Hardware</subject><subject>Iterative methods</subject><subject>Linear programming</subject><subject>Lookup tables</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Parabolas</subject><subject>Segments</subject><subject>Software</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUMtOwzAQtBBIVKVfwMUS54AfSRwfS9UCUgVFwDnaOJsqVRoH2-H19RiVAwf2sqOd1YxmCDnn7FJKza6wQxOc7VvjORNcKJYekYlgSidaaHH8B5-Smfc7FkdzWUg2IdtNiwbfW490Aw4q27WGzofB2Y92DwHpwu6HMUBobU-vwWNNI4CeLp2zLll1EAL28fqE2z32AV0kawr03r5hRx9H6EP7he6MnDTQeZz97il5WS2fF7fJ-uHmbjFfJ0YKEZJacIkyy3gDoITMFUilNeg8Y6YpWMp4WhUqcikqUDUoLiteFbLCFLSpGjklFwfdmOB1RB_KnR1dHy1Lkemccaaj7pTIw5dx1nuHTTm4GNd9lpyVP6WW_5QqvwH4y24n</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>An, Mengyu</creator><creator>Luo, Yuanyong</creator><creator>Zheng, Muhan</creator><creator>Wang, Yuxuan</creator><creator>Dong, Hongxi</creator><creator>Wang, Zhongfeng</creator><creator>Peng, Chenglei</creator><creator>Pan, Hongbing</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4450-066X</orcidid><orcidid>https://orcid.org/0000-0001-9981-0588</orcidid><orcidid>https://orcid.org/0000-0002-1527-3672</orcidid><orcidid>https://orcid.org/0000-0003-2030-2877</orcidid></search><sort><creationdate>20211101</creationdate><title>Piecewise Parabolic Approximate Computation Based on an Error-Flattened Segmenter and a Novel Quantizer</title><author>An, Mengyu ; Luo, Yuanyong ; Zheng, Muhan ; Wang, Yuxuan ; Dong, Hongxi ; Wang, Zhongfeng ; Peng, Chenglei ; Pan, Hongbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-d213e3551faa72367a3799a9650cf804014b87aa74e7a7da713b1b83be4a9cbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Circuit design</topic><topic>Computation</topic><topic>Design</topic><topic>Errors</topic><topic>Fixed points (mathematics)</topic><topic>Hardware</topic><topic>Iterative methods</topic><topic>Linear programming</topic><topic>Lookup tables</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Parabolas</topic><topic>Segments</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Mengyu</creatorcontrib><creatorcontrib>Luo, Yuanyong</creatorcontrib><creatorcontrib>Zheng, Muhan</creatorcontrib><creatorcontrib>Wang, Yuxuan</creatorcontrib><creatorcontrib>Dong, Hongxi</creatorcontrib><creatorcontrib>Wang, Zhongfeng</creatorcontrib><creatorcontrib>Peng, Chenglei</creatorcontrib><creatorcontrib>Pan, Hongbing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Mengyu</au><au>Luo, Yuanyong</au><au>Zheng, Muhan</au><au>Wang, Yuxuan</au><au>Dong, Hongxi</au><au>Wang, Zhongfeng</au><au>Peng, Chenglei</au><au>Pan, Hongbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Piecewise Parabolic Approximate Computation Based on an Error-Flattened Segmenter and a Novel Quantizer</atitle><jtitle>Electronics (Basel)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>10</volume><issue>21</issue><spage>2704</spage><pages>2704-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This paper proposes a novel Piecewise Parabolic Approximate Computation method for hardware function evaluation, which mainly incorporates an error-flattened segmenter and an implementation quantizer. Under a required software maximum absolute error (MAE), the segmenter adaptively selects a minimum number of parabolas to approximate the objective function. By completely imitating the circuit’s behavior before actual implementation, the quantizer calculates the minimum quantization bit width to ensure a non-redundant fixed-point hardware architecture with an MAE of 1 unit of least precision (ulp), eliminating the iterative design time for the circuits. The method causes the number of segments to reach the theoretical limit, and has great advantages in the number of segments and the size of the look-up table (LUT). To prove the superiority of the proposed method, six common functions were implemented by the proposed method under TSMC-90 nm technology. Compared to the state-of-the-art piecewise quadratic approximation methods, the proposed method has advantages in the area with roughly the same delay. Furthermore, a unified function-evaluation unit was also implemented under TSMC-90 nm technology.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics10212704</doi><orcidid>https://orcid.org/0000-0002-4450-066X</orcidid><orcidid>https://orcid.org/0000-0001-9981-0588</orcidid><orcidid>https://orcid.org/0000-0002-1527-3672</orcidid><orcidid>https://orcid.org/0000-0003-2030-2877</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2021-11, Vol.10 (21), p.2704
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2596010972
source Publicly Available Content Database
subjects Accuracy
Approximation
Circuit design
Computation
Design
Errors
Fixed points (mathematics)
Hardware
Iterative methods
Linear programming
Lookup tables
Mathematical analysis
Methods
Parabolas
Segments
Software
title Piecewise Parabolic Approximate Computation Based on an Error-Flattened Segmenter and a Novel Quantizer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A43%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Piecewise%20Parabolic%20Approximate%20Computation%20Based%20on%20an%20Error-Flattened%20Segmenter%20and%20a%20Novel%20Quantizer&rft.jtitle=Electronics%20(Basel)&rft.au=An,%20Mengyu&rft.date=2021-11-01&rft.volume=10&rft.issue=21&rft.spage=2704&rft.pages=2704-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10212704&rft_dat=%3Cproquest_cross%3E2596010972%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-d213e3551faa72367a3799a9650cf804014b87aa74e7a7da713b1b83be4a9cbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2596010972&rft_id=info:pmid/&rfr_iscdi=true