Loading…

Stock Market Prediction Using Machine Learning Techniques: A Decade Survey on Methodologies, Recent Developments, and Future Directions

With the advent of technological marvels like global digitization, the prediction of the stock market has entered a technologically advanced era, revamping the old model of trading. With the ceaseless increase in market capitalization, stock trading has become a center of investment for many financi...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2021-11, Vol.10 (21), p.2717
Main Authors: Rouf, Nusrat, Malik, Majid Bashir, Arif, Tasleem, Sharma, Sparsh, Singh, Saurabh, Aich, Satyabrata, Kim, Hee-Cheol
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the advent of technological marvels like global digitization, the prediction of the stock market has entered a technologically advanced era, revamping the old model of trading. With the ceaseless increase in market capitalization, stock trading has become a center of investment for many financial investors. Many analysts and researchers have developed tools and techniques that predict stock price movements and help investors in proper decision-making. Advanced trading models enable researchers to predict the market using non-traditional textual data from social platforms. The application of advanced machine learning approaches such as text data analytics and ensemble methods have greatly increased the prediction accuracies. Meanwhile, the analysis and prediction of stock markets continue to be one of the most challenging research areas due to dynamic, erratic, and chaotic data. This study explains the systematics of machine learning-based approaches for stock market prediction based on the deployment of a generic framework. Findings from the last decade (2011–2021) were critically analyzed, having been retrieved from online digital libraries and databases like ACM digital library and Scopus. Furthermore, an extensive comparative analysis was carried out to identify the direction of significance. The study would be helpful for emerging researchers to understand the basics and advancements of this emerging area, and thus carry-on further research in promising directions.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics10212717