Loading…

Exact equations to design aplanatic sequential optical systems

We present the exact differential equations to design an aplanatic sequential optical system, a system that is free of spherical aberration and linear coma. We get the exact set of equations from the Fermat principle and the Abbe sine condition. We solve the mentioned set of equations by implementin...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2021-10, Vol.60 (30), p.9263
Main Author: González-Acuña, Rafael G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c290t-e593e7ad7c72be87edf53579d03af8e730d878e36e9204ec74491ff9bb4f09443
cites cdi_FETCH-LOGICAL-c290t-e593e7ad7c72be87edf53579d03af8e730d878e36e9204ec74491ff9bb4f09443
container_end_page
container_issue 30
container_start_page 9263
container_title Applied optics (2004)
container_volume 60
creator González-Acuña, Rafael G.
description We present the exact differential equations to design an aplanatic sequential optical system, a system that is free of spherical aberration and linear coma. We get the exact set of equations from the Fermat principle and the Abbe sine condition. We solve the mentioned set of equations by implementing the Runge–Kutta algorithm. We test the solutions using commercial ray-tracing software and confirm the expected behavior of the optical system.
doi_str_mv 10.1364/AO.437739
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596070667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596070667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-e593e7ad7c72be87edf53579d03af8e730d878e36e9204ec74491ff9bb4f09443</originalsourceid><addsrcrecordid>eNotUMFKxDAUDKJgXT34BwVPHromTdLXXISy7Kqw0IuCt5C2L9Kl29YkC-7fG6mnecwbZoYh5J7RNeOFeKrqteAAXF2QJGdSZpwV8pIk8VQZy8vPa3Lj_YFSLoWChDxvf0wbUvw-mdBPo0_DlHbo-68xNfNgxsi2qY9vHENvhnSaIxHRn33Ao78lV9YMHu_-cUU-dtv3zWu2r1_eNtU-a3NFQ4ZScQTTQQt5gyVgZyWXoDrKjS0ROO1KKJEXqHIqsAUhFLNWNY2wVAnBV-Rh8Z3dFLv4oA_TyY0xUudSFRRoUUBUPS6q1k3eO7R6dv3RuLNmVP_No6taL_PwX2XrV1Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596070667</pqid></control><display><type>article</type><title>Exact equations to design aplanatic sequential optical systems</title><source>OSA_美国光学学会数据库1</source><creator>González-Acuña, Rafael G.</creator><creatorcontrib>González-Acuña, Rafael G.</creatorcontrib><description>We present the exact differential equations to design an aplanatic sequential optical system, a system that is free of spherical aberration and linear coma. We get the exact set of equations from the Fermat principle and the Abbe sine condition. We solve the mentioned set of equations by implementing the Runge–Kutta algorithm. We test the solutions using commercial ray-tracing software and confirm the expected behavior of the optical system.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.437739</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Algorithms ; Differential equations ; Fermat principle ; Mathematical analysis ; Ray tracing ; Runge-Kutta method</subject><ispartof>Applied optics (2004), 2021-10, Vol.60 (30), p.9263</ispartof><rights>Copyright Optical Society of America Oct 20, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-e593e7ad7c72be87edf53579d03af8e730d878e36e9204ec74491ff9bb4f09443</citedby><cites>FETCH-LOGICAL-c290t-e593e7ad7c72be87edf53579d03af8e730d878e36e9204ec74491ff9bb4f09443</cites><orcidid>0000-0003-1114-0327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids></links><search><creatorcontrib>González-Acuña, Rafael G.</creatorcontrib><title>Exact equations to design aplanatic sequential optical systems</title><title>Applied optics (2004)</title><description>We present the exact differential equations to design an aplanatic sequential optical system, a system that is free of spherical aberration and linear coma. We get the exact set of equations from the Fermat principle and the Abbe sine condition. We solve the mentioned set of equations by implementing the Runge–Kutta algorithm. We test the solutions using commercial ray-tracing software and confirm the expected behavior of the optical system.</description><subject>Algorithms</subject><subject>Differential equations</subject><subject>Fermat principle</subject><subject>Mathematical analysis</subject><subject>Ray tracing</subject><subject>Runge-Kutta method</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotUMFKxDAUDKJgXT34BwVPHromTdLXXISy7Kqw0IuCt5C2L9Kl29YkC-7fG6mnecwbZoYh5J7RNeOFeKrqteAAXF2QJGdSZpwV8pIk8VQZy8vPa3Lj_YFSLoWChDxvf0wbUvw-mdBPo0_DlHbo-68xNfNgxsi2qY9vHENvhnSaIxHRn33Ao78lV9YMHu_-cUU-dtv3zWu2r1_eNtU-a3NFQ4ZScQTTQQt5gyVgZyWXoDrKjS0ROO1KKJEXqHIqsAUhFLNWNY2wVAnBV-Rh8Z3dFLv4oA_TyY0xUudSFRRoUUBUPS6q1k3eO7R6dv3RuLNmVP_No6taL_PwX2XrV1Y</recordid><startdate>20211020</startdate><enddate>20211020</enddate><creator>González-Acuña, Rafael G.</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1114-0327</orcidid></search><sort><creationdate>20211020</creationdate><title>Exact equations to design aplanatic sequential optical systems</title><author>González-Acuña, Rafael G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-e593e7ad7c72be87edf53579d03af8e730d878e36e9204ec74491ff9bb4f09443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Differential equations</topic><topic>Fermat principle</topic><topic>Mathematical analysis</topic><topic>Ray tracing</topic><topic>Runge-Kutta method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Acuña, Rafael G.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Acuña, Rafael G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact equations to design aplanatic sequential optical systems</atitle><jtitle>Applied optics (2004)</jtitle><date>2021-10-20</date><risdate>2021</risdate><volume>60</volume><issue>30</issue><spage>9263</spage><pages>9263-</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>We present the exact differential equations to design an aplanatic sequential optical system, a system that is free of spherical aberration and linear coma. We get the exact set of equations from the Fermat principle and the Abbe sine condition. We solve the mentioned set of equations by implementing the Runge–Kutta algorithm. We test the solutions using commercial ray-tracing software and confirm the expected behavior of the optical system.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/AO.437739</doi><orcidid>https://orcid.org/0000-0003-1114-0327</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2021-10, Vol.60 (30), p.9263
issn 1559-128X
2155-3165
language eng
recordid cdi_proquest_journals_2596070667
source OSA_美国光学学会数据库1
subjects Algorithms
Differential equations
Fermat principle
Mathematical analysis
Ray tracing
Runge-Kutta method
title Exact equations to design aplanatic sequential optical systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20equations%20to%20design%20aplanatic%20sequential%20optical%20systems&rft.jtitle=Applied%20optics%20(2004)&rft.au=Gonz%C3%A1lez-Acu%C3%B1a,%20Rafael%20G.&rft.date=2021-10-20&rft.volume=60&rft.issue=30&rft.spage=9263&rft.pages=9263-&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.437739&rft_dat=%3Cproquest_cross%3E2596070667%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c290t-e593e7ad7c72be87edf53579d03af8e730d878e36e9204ec74491ff9bb4f09443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2596070667&rft_id=info:pmid/&rfr_iscdi=true