Loading…
Exact equations to design aplanatic sequential optical systems
We present the exact differential equations to design an aplanatic sequential optical system, a system that is free of spherical aberration and linear coma. We get the exact set of equations from the Fermat principle and the Abbe sine condition. We solve the mentioned set of equations by implementin...
Saved in:
Published in: | Applied optics (2004) 2021-10, Vol.60 (30), p.9263 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c290t-e593e7ad7c72be87edf53579d03af8e730d878e36e9204ec74491ff9bb4f09443 |
---|---|
cites | cdi_FETCH-LOGICAL-c290t-e593e7ad7c72be87edf53579d03af8e730d878e36e9204ec74491ff9bb4f09443 |
container_end_page | |
container_issue | 30 |
container_start_page | 9263 |
container_title | Applied optics (2004) |
container_volume | 60 |
creator | González-Acuña, Rafael G. |
description | We present the exact differential equations to design an aplanatic sequential optical system, a system that is free of spherical aberration and linear coma. We get the exact set of equations from the Fermat principle and the Abbe sine condition. We solve the mentioned set of equations by implementing the Runge–Kutta algorithm. We test the solutions using commercial ray-tracing software and confirm the expected behavior of the optical system. |
doi_str_mv | 10.1364/AO.437739 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596070667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596070667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-e593e7ad7c72be87edf53579d03af8e730d878e36e9204ec74491ff9bb4f09443</originalsourceid><addsrcrecordid>eNotUMFKxDAUDKJgXT34BwVPHromTdLXXISy7Kqw0IuCt5C2L9Kl29YkC-7fG6mnecwbZoYh5J7RNeOFeKrqteAAXF2QJGdSZpwV8pIk8VQZy8vPa3Lj_YFSLoWChDxvf0wbUvw-mdBPo0_DlHbo-68xNfNgxsi2qY9vHENvhnSaIxHRn33Ao78lV9YMHu_-cUU-dtv3zWu2r1_eNtU-a3NFQ4ZScQTTQQt5gyVgZyWXoDrKjS0ROO1KKJEXqHIqsAUhFLNWNY2wVAnBV-Rh8Z3dFLv4oA_TyY0xUudSFRRoUUBUPS6q1k3eO7R6dv3RuLNmVP_No6taL_PwX2XrV1Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596070667</pqid></control><display><type>article</type><title>Exact equations to design aplanatic sequential optical systems</title><source>OSA_美国光学学会数据库1</source><creator>González-Acuña, Rafael G.</creator><creatorcontrib>González-Acuña, Rafael G.</creatorcontrib><description>We present the exact differential equations to design an aplanatic sequential optical system, a system that is free of spherical aberration and linear coma. We get the exact set of equations from the Fermat principle and the Abbe sine condition. We solve the mentioned set of equations by implementing the Runge–Kutta algorithm. We test the solutions using commercial ray-tracing software and confirm the expected behavior of the optical system.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.437739</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Algorithms ; Differential equations ; Fermat principle ; Mathematical analysis ; Ray tracing ; Runge-Kutta method</subject><ispartof>Applied optics (2004), 2021-10, Vol.60 (30), p.9263</ispartof><rights>Copyright Optical Society of America Oct 20, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-e593e7ad7c72be87edf53579d03af8e730d878e36e9204ec74491ff9bb4f09443</citedby><cites>FETCH-LOGICAL-c290t-e593e7ad7c72be87edf53579d03af8e730d878e36e9204ec74491ff9bb4f09443</cites><orcidid>0000-0003-1114-0327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3258,27924,27925</link.rule.ids></links><search><creatorcontrib>González-Acuña, Rafael G.</creatorcontrib><title>Exact equations to design aplanatic sequential optical systems</title><title>Applied optics (2004)</title><description>We present the exact differential equations to design an aplanatic sequential optical system, a system that is free of spherical aberration and linear coma. We get the exact set of equations from the Fermat principle and the Abbe sine condition. We solve the mentioned set of equations by implementing the Runge–Kutta algorithm. We test the solutions using commercial ray-tracing software and confirm the expected behavior of the optical system.</description><subject>Algorithms</subject><subject>Differential equations</subject><subject>Fermat principle</subject><subject>Mathematical analysis</subject><subject>Ray tracing</subject><subject>Runge-Kutta method</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotUMFKxDAUDKJgXT34BwVPHromTdLXXISy7Kqw0IuCt5C2L9Kl29YkC-7fG6mnecwbZoYh5J7RNeOFeKrqteAAXF2QJGdSZpwV8pIk8VQZy8vPa3Lj_YFSLoWChDxvf0wbUvw-mdBPo0_DlHbo-68xNfNgxsi2qY9vHENvhnSaIxHRn33Ao78lV9YMHu_-cUU-dtv3zWu2r1_eNtU-a3NFQ4ZScQTTQQt5gyVgZyWXoDrKjS0ROO1KKJEXqHIqsAUhFLNWNY2wVAnBV-Rh8Z3dFLv4oA_TyY0xUudSFRRoUUBUPS6q1k3eO7R6dv3RuLNmVP_No6taL_PwX2XrV1Y</recordid><startdate>20211020</startdate><enddate>20211020</enddate><creator>González-Acuña, Rafael G.</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1114-0327</orcidid></search><sort><creationdate>20211020</creationdate><title>Exact equations to design aplanatic sequential optical systems</title><author>González-Acuña, Rafael G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-e593e7ad7c72be87edf53579d03af8e730d878e36e9204ec74491ff9bb4f09443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Differential equations</topic><topic>Fermat principle</topic><topic>Mathematical analysis</topic><topic>Ray tracing</topic><topic>Runge-Kutta method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Acuña, Rafael G.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Acuña, Rafael G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact equations to design aplanatic sequential optical systems</atitle><jtitle>Applied optics (2004)</jtitle><date>2021-10-20</date><risdate>2021</risdate><volume>60</volume><issue>30</issue><spage>9263</spage><pages>9263-</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>We present the exact differential equations to design an aplanatic sequential optical system, a system that is free of spherical aberration and linear coma. We get the exact set of equations from the Fermat principle and the Abbe sine condition. We solve the mentioned set of equations by implementing the Runge–Kutta algorithm. We test the solutions using commercial ray-tracing software and confirm the expected behavior of the optical system.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/AO.437739</doi><orcidid>https://orcid.org/0000-0003-1114-0327</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2021-10, Vol.60 (30), p.9263 |
issn | 1559-128X 2155-3165 |
language | eng |
recordid | cdi_proquest_journals_2596070667 |
source | OSA_美国光学学会数据库1 |
subjects | Algorithms Differential equations Fermat principle Mathematical analysis Ray tracing Runge-Kutta method |
title | Exact equations to design aplanatic sequential optical systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20equations%20to%20design%20aplanatic%20sequential%20optical%20systems&rft.jtitle=Applied%20optics%20(2004)&rft.au=Gonz%C3%A1lez-Acu%C3%B1a,%20Rafael%20G.&rft.date=2021-10-20&rft.volume=60&rft.issue=30&rft.spage=9263&rft.pages=9263-&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.437739&rft_dat=%3Cproquest_cross%3E2596070667%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c290t-e593e7ad7c72be87edf53579d03af8e730d878e36e9204ec74491ff9bb4f09443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2596070667&rft_id=info:pmid/&rfr_iscdi=true |